Properties

Label 180.9.c.a.91.11
Level $180$
Weight $9$
Character 180.91
Analytic conductor $73.328$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [180,9,Mod(91,180)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(180, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("180.91"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 180.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(73.3281498110\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 15630052 x^{14} + 100431843210026 x^{12} + \cdots + 41\!\cdots\!25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{58}\cdot 3^{4}\cdot 5^{16} \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 91.11
Root \(1770.35i\) of defining polynomial
Character \(\chi\) \(=\) 180.91
Dual form 180.9.c.a.91.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(7.35022 - 14.2118i) q^{2} +(-147.949 - 208.919i) q^{4} +279.508 q^{5} +3540.70i q^{7} +(-4056.56 + 567.011i) q^{8} +(2054.45 - 3972.31i) q^{10} -15969.8i q^{11} -24176.2 q^{13} +(50319.6 + 26024.9i) q^{14} +(-21758.4 + 61818.6i) q^{16} -43810.0 q^{17} +50919.1i q^{19} +(-41352.9 - 58394.7i) q^{20} +(-226960. - 117382. i) q^{22} -270875. i q^{23} +78125.0 q^{25} +(-177701. + 343587. i) q^{26} +(739720. - 523841. i) q^{28} +1.32588e6 q^{29} +1.18623e6i q^{31} +(718623. + 763605. i) q^{32} +(-322013. + 622618. i) q^{34} +989655. i q^{35} +2.97108e6 q^{37} +(723650. + 374266. i) q^{38} +(-1.13384e6 + 158484. i) q^{40} +4.92072e6 q^{41} -2.86229e6i q^{43} +(-3.33641e6 + 2.36272e6i) q^{44} +(-3.84961e6 - 1.99099e6i) q^{46} +12696.5i q^{47} -6.77174e6 q^{49} +(574236. - 1.11029e6i) q^{50} +(3.57684e6 + 5.05088e6i) q^{52} +5.50364e6 q^{53} -4.46371e6i q^{55} +(-2.00761e6 - 1.43631e7i) q^{56} +(9.74547e6 - 1.88430e7i) q^{58} +6.68863e6i q^{59} -2.50550e6 q^{61} +(1.68584e7 + 8.71902e6i) q^{62} +(1.61342e7 - 4.60023e6i) q^{64} -6.75746e6 q^{65} +3.86718e6i q^{67} +(6.48163e6 + 9.15275e6i) q^{68} +(1.40647e7 + 7.27418e6i) q^{70} -3.21701e7i q^{71} +1.91362e7 q^{73} +(2.18381e7 - 4.22243e7i) q^{74} +(1.06380e7 - 7.53341e6i) q^{76} +5.65444e7 q^{77} +5.33471e7i q^{79} +(-6.08166e6 + 1.72788e7i) q^{80} +(3.61683e7 - 6.99321e7i) q^{82} -6.22776e6i q^{83} -1.22453e7 q^{85} +(-4.06782e7 - 2.10385e7i) q^{86} +(9.05507e6 + 6.47827e7i) q^{88} -3.83322e7 q^{89} -8.56008e7i q^{91} +(-5.65909e7 + 4.00755e7i) q^{92} +(180440. + 93322.2i) q^{94} +1.42323e7i q^{95} +7.87237e7 q^{97} +(-4.97738e7 + 9.62384e7i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{2} - 52 q^{4} + 14184 q^{8} + 8750 q^{10} + 51392 q^{13} - 68472 q^{14} - 81424 q^{16} - 27552 q^{17} - 172500 q^{20} - 389120 q^{22} + 1250000 q^{25} - 1037124 q^{26} + 1288520 q^{28} - 2764896 q^{29}+ \cdots + 285387714 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/180\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(91\) \(101\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 7.35022 14.2118i 0.459389 0.888235i
\(3\) 0 0
\(4\) −147.949 208.919i −0.577924 0.816090i
\(5\) 279.508 0.447214
\(6\) 0 0
\(7\) 3540.70i 1.47468i 0.675524 + 0.737338i \(0.263918\pi\)
−0.675524 + 0.737338i \(0.736082\pi\)
\(8\) −4056.56 + 567.011i −0.990372 + 0.138430i
\(9\) 0 0
\(10\) 2054.45 3972.31i 0.205445 0.397231i
\(11\) 15969.8i 1.09076i −0.838188 0.545381i \(-0.816385\pi\)
0.838188 0.545381i \(-0.183615\pi\)
\(12\) 0 0
\(13\) −24176.2 −0.846477 −0.423239 0.906018i \(-0.639107\pi\)
−0.423239 + 0.906018i \(0.639107\pi\)
\(14\) 50319.6 + 26024.9i 1.30986 + 0.677449i
\(15\) 0 0
\(16\) −21758.4 + 61818.6i −0.332007 + 0.943277i
\(17\) −43810.0 −0.524539 −0.262269 0.964995i \(-0.584471\pi\)
−0.262269 + 0.964995i \(0.584471\pi\)
\(18\) 0 0
\(19\) 50919.1i 0.390721i 0.980732 + 0.195360i \(0.0625876\pi\)
−0.980732 + 0.195360i \(0.937412\pi\)
\(20\) −41352.9 58394.7i −0.258456 0.364967i
\(21\) 0 0
\(22\) −226960. 117382.i −0.968853 0.501083i
\(23\) 270875.i 0.967959i −0.875079 0.483980i \(-0.839191\pi\)
0.875079 0.483980i \(-0.160809\pi\)
\(24\) 0 0
\(25\) 78125.0 0.200000
\(26\) −177701. + 343587.i −0.388862 + 0.751871i
\(27\) 0 0
\(28\) 739720. 523841.i 1.20347 0.852251i
\(29\) 1.32588e6 1.87461 0.937305 0.348511i \(-0.113313\pi\)
0.937305 + 0.348511i \(0.113313\pi\)
\(30\) 0 0
\(31\) 1.18623e6i 1.28446i 0.766512 + 0.642230i \(0.221991\pi\)
−0.766512 + 0.642230i \(0.778009\pi\)
\(32\) 718623. + 763605.i 0.685332 + 0.728231i
\(33\) 0 0
\(34\) −322013. + 622618.i −0.240967 + 0.465914i
\(35\) 989655.i 0.659495i
\(36\) 0 0
\(37\) 2.97108e6 1.58529 0.792643 0.609686i \(-0.208705\pi\)
0.792643 + 0.609686i \(0.208705\pi\)
\(38\) 723650. + 374266.i 0.347052 + 0.179493i
\(39\) 0 0
\(40\) −1.13384e6 + 158484.i −0.442908 + 0.0619079i
\(41\) 4.92072e6 1.74138 0.870689 0.491834i \(-0.163673\pi\)
0.870689 + 0.491834i \(0.163673\pi\)
\(42\) 0 0
\(43\) 2.86229e6i 0.837221i −0.908166 0.418611i \(-0.862517\pi\)
0.908166 0.418611i \(-0.137483\pi\)
\(44\) −3.33641e6 + 2.36272e6i −0.890160 + 0.630378i
\(45\) 0 0
\(46\) −3.84961e6 1.99099e6i −0.859776 0.444669i
\(47\) 12696.5i 0.00260192i 0.999999 + 0.00130096i \(0.000414108\pi\)
−0.999999 + 0.00130096i \(0.999586\pi\)
\(48\) 0 0
\(49\) −6.77174e6 −1.17467
\(50\) 574236. 1.11029e6i 0.0918777 0.177647i
\(51\) 0 0
\(52\) 3.57684e6 + 5.05088e6i 0.489200 + 0.690802i
\(53\) 5.50364e6 0.697504 0.348752 0.937215i \(-0.386606\pi\)
0.348752 + 0.937215i \(0.386606\pi\)
\(54\) 0 0
\(55\) 4.46371e6i 0.487803i
\(56\) −2.00761e6 1.43631e7i −0.204140 1.46048i
\(57\) 0 0
\(58\) 9.74547e6 1.88430e7i 0.861174 1.66509i
\(59\) 6.68863e6i 0.551987i 0.961159 + 0.275994i \(0.0890068\pi\)
−0.961159 + 0.275994i \(0.910993\pi\)
\(60\) 0 0
\(61\) −2.50550e6 −0.180957 −0.0904784 0.995898i \(-0.528840\pi\)
−0.0904784 + 0.995898i \(0.528840\pi\)
\(62\) 1.68584e7 + 8.71902e6i 1.14090 + 0.590066i
\(63\) 0 0
\(64\) 1.61342e7 4.60023e6i 0.961674 0.274195i
\(65\) −6.75746e6 −0.378556
\(66\) 0 0
\(67\) 3.86718e6i 0.191909i 0.995386 + 0.0959546i \(0.0305904\pi\)
−0.995386 + 0.0959546i \(0.969410\pi\)
\(68\) 6.48163e6 + 9.15275e6i 0.303144 + 0.428071i
\(69\) 0 0
\(70\) 1.40647e7 + 7.27418e6i 0.585787 + 0.302965i
\(71\) 3.21701e7i 1.26596i −0.774170 0.632978i \(-0.781832\pi\)
0.774170 0.632978i \(-0.218168\pi\)
\(72\) 0 0
\(73\) 1.91362e7 0.673853 0.336927 0.941531i \(-0.390613\pi\)
0.336927 + 0.941531i \(0.390613\pi\)
\(74\) 2.18381e7 4.22243e7i 0.728262 1.40811i
\(75\) 0 0
\(76\) 1.06380e7 7.53341e6i 0.318863 0.225807i
\(77\) 5.65444e7 1.60852
\(78\) 0 0
\(79\) 5.33471e7i 1.36963i 0.728718 + 0.684814i \(0.240116\pi\)
−0.728718 + 0.684814i \(0.759884\pi\)
\(80\) −6.08166e6 + 1.72788e7i −0.148478 + 0.421846i
\(81\) 0 0
\(82\) 3.61683e7 6.99321e7i 0.799969 1.54675i
\(83\) 6.22776e6i 0.131226i −0.997845 0.0656129i \(-0.979100\pi\)
0.997845 0.0656129i \(-0.0209003\pi\)
\(84\) 0 0
\(85\) −1.22453e7 −0.234581
\(86\) −4.06782e7 2.10385e7i −0.743650 0.384610i
\(87\) 0 0
\(88\) 9.05507e6 + 6.47827e7i 0.150995 + 1.08026i
\(89\) −3.83322e7 −0.610947 −0.305473 0.952201i \(-0.598815\pi\)
−0.305473 + 0.952201i \(0.598815\pi\)
\(90\) 0 0
\(91\) 8.56008e7i 1.24828i
\(92\) −5.65909e7 + 4.00755e7i −0.789942 + 0.559407i
\(93\) 0 0
\(94\) 180440. + 93322.2i 0.00231111 + 0.00119529i
\(95\) 1.42323e7i 0.174736i
\(96\) 0 0
\(97\) 7.87237e7 0.889239 0.444620 0.895720i \(-0.353339\pi\)
0.444620 + 0.895720i \(0.353339\pi\)
\(98\) −4.97738e7 + 9.62384e7i −0.539630 + 1.04338i
\(99\) 0 0
\(100\) −1.15585e7 1.63218e7i −0.115585 0.163218i
\(101\) 1.16450e7 0.111906 0.0559530 0.998433i \(-0.482180\pi\)
0.0559530 + 0.998433i \(0.482180\pi\)
\(102\) 0 0
\(103\) 6.88569e7i 0.611785i −0.952066 0.305892i \(-0.901045\pi\)
0.952066 0.305892i \(-0.0989547\pi\)
\(104\) 9.80725e7 1.37082e7i 0.838328 0.117178i
\(105\) 0 0
\(106\) 4.04529e7 7.82164e7i 0.320425 0.619547i
\(107\) 7.69690e7i 0.587193i −0.955929 0.293596i \(-0.905148\pi\)
0.955929 0.293596i \(-0.0948521\pi\)
\(108\) 0 0
\(109\) −4.29484e6 −0.0304257 −0.0152129 0.999884i \(-0.504843\pi\)
−0.0152129 + 0.999884i \(0.504843\pi\)
\(110\) −6.34372e7 3.28092e7i −0.433284 0.224091i
\(111\) 0 0
\(112\) −2.18881e8 7.70399e7i −1.39103 0.489603i
\(113\) 2.34309e8 1.43706 0.718530 0.695496i \(-0.244815\pi\)
0.718530 + 0.695496i \(0.244815\pi\)
\(114\) 0 0
\(115\) 7.57118e7i 0.432884i
\(116\) −1.96161e8 2.77001e8i −1.08338 1.52985i
\(117\) 0 0
\(118\) 9.50572e7 + 4.91629e7i 0.490294 + 0.253577i
\(119\) 1.55118e8i 0.773525i
\(120\) 0 0
\(121\) −4.06770e7 −0.189761
\(122\) −1.84160e7 + 3.56076e7i −0.0831295 + 0.160732i
\(123\) 0 0
\(124\) 2.47825e8 1.75500e8i 1.04824 0.742321i
\(125\) 2.18366e7 0.0894427
\(126\) 0 0
\(127\) 2.94344e8i 1.13146i −0.824589 0.565732i \(-0.808594\pi\)
0.824589 0.565732i \(-0.191406\pi\)
\(128\) 5.32125e7 2.63108e8i 0.198232 0.980155i
\(129\) 0 0
\(130\) −4.96688e7 + 9.60355e7i −0.173904 + 0.336247i
\(131\) 3.43317e8i 1.16576i 0.812558 + 0.582881i \(0.198075\pi\)
−0.812558 + 0.582881i \(0.801925\pi\)
\(132\) 0 0
\(133\) −1.80289e8 −0.576186
\(134\) 5.49595e7 + 2.84246e7i 0.170461 + 0.0881609i
\(135\) 0 0
\(136\) 1.77718e8 2.48407e7i 0.519489 0.0726121i
\(137\) −2.03539e8 −0.577784 −0.288892 0.957362i \(-0.593287\pi\)
−0.288892 + 0.957362i \(0.593287\pi\)
\(138\) 0 0
\(139\) 2.51305e8i 0.673197i 0.941648 + 0.336599i \(0.109277\pi\)
−0.941648 + 0.336599i \(0.890723\pi\)
\(140\) 2.06758e8 1.46418e8i 0.538208 0.381138i
\(141\) 0 0
\(142\) −4.57193e8 2.36457e8i −1.12447 0.581566i
\(143\) 3.86091e8i 0.923305i
\(144\) 0 0
\(145\) 3.70593e8 0.838351
\(146\) 1.40656e8 2.71960e8i 0.309560 0.598540i
\(147\) 0 0
\(148\) −4.39567e8 6.20716e8i −0.916175 1.29374i
\(149\) −7.65026e8 −1.55214 −0.776070 0.630647i \(-0.782790\pi\)
−0.776070 + 0.630647i \(0.782790\pi\)
\(150\) 0 0
\(151\) 5.12585e8i 0.985958i −0.870041 0.492979i \(-0.835908\pi\)
0.870041 0.492979i \(-0.164092\pi\)
\(152\) −2.88717e7 2.06557e8i −0.0540876 0.386959i
\(153\) 0 0
\(154\) 4.15613e8 8.03596e8i 0.738936 1.42874i
\(155\) 3.31560e8i 0.574428i
\(156\) 0 0
\(157\) 1.16971e9 1.92522 0.962610 0.270890i \(-0.0873179\pi\)
0.962610 + 0.270890i \(0.0873179\pi\)
\(158\) 7.58157e8 + 3.92113e8i 1.21655 + 0.629191i
\(159\) 0 0
\(160\) 2.00861e8 + 2.13434e8i 0.306490 + 0.325675i
\(161\) 9.59085e8 1.42743
\(162\) 0 0
\(163\) 8.79268e8i 1.24558i 0.782390 + 0.622789i \(0.214000\pi\)
−0.782390 + 0.622789i \(0.786000\pi\)
\(164\) −7.28014e8 1.02803e9i −1.00638 1.42112i
\(165\) 0 0
\(166\) −8.85075e7 4.57754e7i −0.116559 0.0602837i
\(167\) 4.63319e8i 0.595682i −0.954616 0.297841i \(-0.903734\pi\)
0.954616 0.297841i \(-0.0962665\pi\)
\(168\) 0 0
\(169\) −2.31240e8 −0.283476
\(170\) −9.00054e7 + 1.74027e8i −0.107764 + 0.208363i
\(171\) 0 0
\(172\) −5.97988e8 + 4.23472e8i −0.683248 + 0.483851i
\(173\) −4.71680e8 −0.526579 −0.263289 0.964717i \(-0.584807\pi\)
−0.263289 + 0.964717i \(0.584807\pi\)
\(174\) 0 0
\(175\) 2.76617e8i 0.294935i
\(176\) 9.87233e8 + 3.47478e8i 1.02889 + 0.362140i
\(177\) 0 0
\(178\) −2.81750e8 + 5.44768e8i −0.280662 + 0.542664i
\(179\) 8.30768e8i 0.809222i 0.914489 + 0.404611i \(0.132593\pi\)
−0.914489 + 0.404611i \(0.867407\pi\)
\(180\) 0 0
\(181\) 6.19754e8 0.577437 0.288719 0.957414i \(-0.406771\pi\)
0.288719 + 0.957414i \(0.406771\pi\)
\(182\) −1.21654e9 6.29184e8i −1.10877 0.573446i
\(183\) 0 0
\(184\) 1.53589e8 + 1.09882e9i 0.133995 + 0.958640i
\(185\) 8.30442e8 0.708961
\(186\) 0 0
\(187\) 6.99639e8i 0.572147i
\(188\) 2.65255e6 1.87843e6i 0.00212340 0.00150371i
\(189\) 0 0
\(190\) 2.02266e8 + 1.04611e8i 0.155206 + 0.0802715i
\(191\) 4.24020e7i 0.0318605i 0.999873 + 0.0159303i \(0.00507097\pi\)
−0.999873 + 0.0159303i \(0.994929\pi\)
\(192\) 0 0
\(193\) 4.21151e8 0.303535 0.151767 0.988416i \(-0.451504\pi\)
0.151767 + 0.988416i \(0.451504\pi\)
\(194\) 5.78636e8 1.11880e9i 0.408506 0.789854i
\(195\) 0 0
\(196\) 1.00187e9 + 1.41475e9i 0.678871 + 0.958637i
\(197\) 1.93944e9 1.28769 0.643846 0.765155i \(-0.277338\pi\)
0.643846 + 0.765155i \(0.277338\pi\)
\(198\) 0 0
\(199\) 2.11255e8i 0.134708i 0.997729 + 0.0673542i \(0.0214557\pi\)
−0.997729 + 0.0673542i \(0.978544\pi\)
\(200\) −3.16919e8 + 4.42977e7i −0.198074 + 0.0276861i
\(201\) 0 0
\(202\) 8.55931e7 1.65496e8i 0.0514083 0.0993989i
\(203\) 4.69452e9i 2.76444i
\(204\) 0 0
\(205\) 1.37538e9 0.778768
\(206\) −9.78578e8 5.06113e8i −0.543409 0.281047i
\(207\) 0 0
\(208\) 5.26036e8 1.49454e9i 0.281036 0.798463i
\(209\) 8.13170e8 0.426183
\(210\) 0 0
\(211\) 2.01406e9i 1.01611i 0.861324 + 0.508056i \(0.169636\pi\)
−0.861324 + 0.508056i \(0.830364\pi\)
\(212\) −8.14256e8 1.14982e9i −0.403104 0.569226i
\(213\) 0 0
\(214\) −1.09387e9 5.65739e8i −0.521565 0.269750i
\(215\) 8.00035e8i 0.374417i
\(216\) 0 0
\(217\) −4.20007e9 −1.89416
\(218\) −3.15680e7 + 6.10373e7i −0.0139772 + 0.0270252i
\(219\) 0 0
\(220\) −9.32554e8 + 6.60399e8i −0.398092 + 0.281913i
\(221\) 1.05916e9 0.444010
\(222\) 0 0
\(223\) 9.06863e8i 0.366710i −0.983047 0.183355i \(-0.941304\pi\)
0.983047 0.183355i \(-0.0586957\pi\)
\(224\) −2.70370e9 + 2.54443e9i −1.07390 + 1.01064i
\(225\) 0 0
\(226\) 1.72222e9 3.32994e9i 0.660169 1.27645i
\(227\) 9.31268e7i 0.0350729i −0.999846 0.0175364i \(-0.994418\pi\)
0.999846 0.0175364i \(-0.00558230\pi\)
\(228\) 0 0
\(229\) −5.17840e8 −0.188301 −0.0941507 0.995558i \(-0.530014\pi\)
−0.0941507 + 0.995558i \(0.530014\pi\)
\(230\) −1.07600e9 5.56498e8i −0.384503 0.198862i
\(231\) 0 0
\(232\) −5.37850e9 + 7.51786e8i −1.85656 + 0.259503i
\(233\) 1.20417e9 0.408569 0.204284 0.978912i \(-0.434513\pi\)
0.204284 + 0.978912i \(0.434513\pi\)
\(234\) 0 0
\(235\) 3.54879e6i 0.00116361i
\(236\) 1.39738e9 9.89573e8i 0.450471 0.319007i
\(237\) 0 0
\(238\) −2.20450e9 1.14015e9i −0.687072 0.355349i
\(239\) 2.12088e9i 0.650018i 0.945711 + 0.325009i \(0.105367\pi\)
−0.945711 + 0.325009i \(0.894633\pi\)
\(240\) 0 0
\(241\) −6.85448e8 −0.203192 −0.101596 0.994826i \(-0.532395\pi\)
−0.101596 + 0.994826i \(0.532395\pi\)
\(242\) −2.98984e8 + 5.78092e8i −0.0871740 + 0.168552i
\(243\) 0 0
\(244\) 3.70685e8 + 5.23447e8i 0.104579 + 0.147677i
\(245\) −1.89276e9 −0.525329
\(246\) 0 0
\(247\) 1.23103e9i 0.330736i
\(248\) −6.72603e8 4.81200e9i −0.177808 1.27209i
\(249\) 0 0
\(250\) 1.60504e8 3.10337e8i 0.0410890 0.0794462i
\(251\) 4.44219e9i 1.11919i 0.828768 + 0.559593i \(0.189042\pi\)
−0.828768 + 0.559593i \(0.810958\pi\)
\(252\) 0 0
\(253\) −4.32582e9 −1.05581
\(254\) −4.18315e9 2.16350e9i −1.00501 0.519782i
\(255\) 0 0
\(256\) −3.34811e9 2.69015e9i −0.779543 0.626349i
\(257\) −1.71181e9 −0.392395 −0.196198 0.980564i \(-0.562859\pi\)
−0.196198 + 0.980564i \(0.562859\pi\)
\(258\) 0 0
\(259\) 1.05197e10i 2.33778i
\(260\) 9.99758e8 + 1.41176e9i 0.218777 + 0.308936i
\(261\) 0 0
\(262\) 4.87914e9 + 2.52345e9i 1.03547 + 0.535538i
\(263\) 2.50597e9i 0.523785i −0.965097 0.261892i \(-0.915653\pi\)
0.965097 0.261892i \(-0.0843465\pi\)
\(264\) 0 0
\(265\) 1.53831e9 0.311933
\(266\) −1.32516e9 + 2.56223e9i −0.264693 + 0.511789i
\(267\) 0 0
\(268\) 8.07929e8 5.72145e8i 0.156615 0.110909i
\(269\) −3.62847e8 −0.0692970 −0.0346485 0.999400i \(-0.511031\pi\)
−0.0346485 + 0.999400i \(0.511031\pi\)
\(270\) 0 0
\(271\) 1.05662e10i 1.95903i 0.201368 + 0.979516i \(0.435461\pi\)
−0.201368 + 0.979516i \(0.564539\pi\)
\(272\) 9.53236e8 2.70827e9i 0.174151 0.494785i
\(273\) 0 0
\(274\) −1.49606e9 + 2.89265e9i −0.265428 + 0.513209i
\(275\) 1.24764e9i 0.218152i
\(276\) 0 0
\(277\) −1.36227e9 −0.231390 −0.115695 0.993285i \(-0.536909\pi\)
−0.115695 + 0.993285i \(0.536909\pi\)
\(278\) 3.57149e9 + 1.84715e9i 0.597958 + 0.309259i
\(279\) 0 0
\(280\) −5.61145e8 4.01460e9i −0.0912942 0.653146i
\(281\) 3.01499e9 0.483572 0.241786 0.970330i \(-0.422267\pi\)
0.241786 + 0.970330i \(0.422267\pi\)
\(282\) 0 0
\(283\) 1.38220e9i 0.215490i −0.994179 0.107745i \(-0.965637\pi\)
0.994179 0.107745i \(-0.0343629\pi\)
\(284\) −6.72094e9 + 4.75952e9i −1.03313 + 0.731627i
\(285\) 0 0
\(286\) 5.48703e9 + 2.83785e9i 0.820112 + 0.424156i
\(287\) 1.74228e10i 2.56797i
\(288\) 0 0
\(289\) −5.05644e9 −0.724859
\(290\) 2.72394e9 5.26679e9i 0.385129 0.744653i
\(291\) 0 0
\(292\) −2.83118e9 3.99793e9i −0.389436 0.549925i
\(293\) −5.86750e9 −0.796127 −0.398064 0.917358i \(-0.630318\pi\)
−0.398064 + 0.917358i \(0.630318\pi\)
\(294\) 0 0
\(295\) 1.86953e9i 0.246856i
\(296\) −1.20524e10 + 1.68463e9i −1.57002 + 0.219452i
\(297\) 0 0
\(298\) −5.62310e9 + 1.08724e10i −0.713035 + 1.37867i
\(299\) 6.54873e9i 0.819355i
\(300\) 0 0
\(301\) 1.01345e10 1.23463
\(302\) −7.28474e9 3.76761e9i −0.875762 0.452938i
\(303\) 0 0
\(304\) −3.14775e9 1.10792e9i −0.368558 0.129722i
\(305\) −7.00308e8 −0.0809263
\(306\) 0 0
\(307\) 5.79386e9i 0.652250i 0.945327 + 0.326125i \(0.105743\pi\)
−0.945327 + 0.326125i \(0.894257\pi\)
\(308\) −8.36567e9 1.18132e10i −0.929603 1.31270i
\(309\) 0 0
\(310\) 4.71206e9 + 2.43704e9i 0.510227 + 0.263886i
\(311\) 8.37260e9i 0.894991i −0.894286 0.447496i \(-0.852316\pi\)
0.894286 0.447496i \(-0.147684\pi\)
\(312\) 0 0
\(313\) 1.22771e10 1.27914 0.639572 0.768731i \(-0.279111\pi\)
0.639572 + 0.768731i \(0.279111\pi\)
\(314\) 8.59764e9 1.66237e10i 0.884424 1.71005i
\(315\) 0 0
\(316\) 1.11452e10 7.89263e9i 1.11774 0.791541i
\(317\) 1.38443e10 1.37099 0.685495 0.728077i \(-0.259586\pi\)
0.685495 + 0.728077i \(0.259586\pi\)
\(318\) 0 0
\(319\) 2.11740e10i 2.04475i
\(320\) 4.50965e9 1.28580e9i 0.430074 0.122624i
\(321\) 0 0
\(322\) 7.04948e9 1.36303e10i 0.655743 1.26789i
\(323\) 2.23077e9i 0.204948i
\(324\) 0 0
\(325\) −1.88877e9 −0.169295
\(326\) 1.24959e10 + 6.46281e9i 1.10637 + 0.572204i
\(327\) 0 0
\(328\) −1.99612e10 + 2.79010e9i −1.72461 + 0.241060i
\(329\) −4.49546e7 −0.00383699
\(330\) 0 0
\(331\) 7.71740e9i 0.642923i −0.946923 0.321462i \(-0.895826\pi\)
0.946923 0.321462i \(-0.104174\pi\)
\(332\) −1.30110e9 + 9.21389e8i −0.107092 + 0.0758386i
\(333\) 0 0
\(334\) −6.58458e9 3.40549e9i −0.529105 0.273649i
\(335\) 1.08091e9i 0.0858244i
\(336\) 0 0
\(337\) −1.47787e10 −1.14582 −0.572910 0.819618i \(-0.694186\pi\)
−0.572910 + 0.819618i \(0.694186\pi\)
\(338\) −1.69966e9 + 3.28633e9i −0.130226 + 0.251793i
\(339\) 0 0
\(340\) 1.81167e9 + 2.55827e9i 0.135570 + 0.191439i
\(341\) 1.89438e10 1.40104
\(342\) 0 0
\(343\) 3.56527e9i 0.257582i
\(344\) 1.62295e9 + 1.16111e10i 0.115897 + 0.829161i
\(345\) 0 0
\(346\) −3.46695e9 + 6.70341e9i −0.241904 + 0.467726i
\(347\) 2.69899e10i 1.86158i −0.365549 0.930792i \(-0.619119\pi\)
0.365549 0.930792i \(-0.380881\pi\)
\(348\) 0 0
\(349\) 2.02677e10 1.36617 0.683083 0.730340i \(-0.260639\pi\)
0.683083 + 0.730340i \(0.260639\pi\)
\(350\) 3.93122e9 + 2.03320e9i 0.261972 + 0.135490i
\(351\) 0 0
\(352\) 1.21947e10 1.14763e10i 0.794326 0.747534i
\(353\) −9.41747e9 −0.606506 −0.303253 0.952910i \(-0.598073\pi\)
−0.303253 + 0.952910i \(0.598073\pi\)
\(354\) 0 0
\(355\) 8.99181e9i 0.566153i
\(356\) 5.67119e9 + 8.00832e9i 0.353081 + 0.498588i
\(357\) 0 0
\(358\) 1.18067e10 + 6.10633e9i 0.718780 + 0.371747i
\(359\) 3.30369e9i 0.198894i −0.995043 0.0994469i \(-0.968293\pi\)
0.995043 0.0994469i \(-0.0317073\pi\)
\(360\) 0 0
\(361\) 1.43908e10 0.847337
\(362\) 4.55533e9 8.80780e9i 0.265268 0.512900i
\(363\) 0 0
\(364\) −1.78836e10 + 1.26645e10i −1.01871 + 0.721412i
\(365\) 5.34874e9 0.301356
\(366\) 0 0
\(367\) 1.14531e10i 0.631335i −0.948870 0.315667i \(-0.897772\pi\)
0.948870 0.315667i \(-0.102228\pi\)
\(368\) 1.67451e10 + 5.89380e9i 0.913053 + 0.321369i
\(369\) 0 0
\(370\) 6.10393e9 1.18021e10i 0.325689 0.629725i
\(371\) 1.94867e10i 1.02859i
\(372\) 0 0
\(373\) 2.26449e10 1.16986 0.584932 0.811083i \(-0.301121\pi\)
0.584932 + 0.811083i \(0.301121\pi\)
\(374\) 9.94311e9 + 5.14250e9i 0.508201 + 0.262838i
\(375\) 0 0
\(376\) −7.19907e6 5.15043e7i −0.000360184 0.00257687i
\(377\) −3.20547e10 −1.58681
\(378\) 0 0
\(379\) 5.61760e9i 0.272266i 0.990691 + 0.136133i \(0.0434675\pi\)
−0.990691 + 0.136133i \(0.956533\pi\)
\(380\) 2.97340e9 2.10565e9i 0.142600 0.100984i
\(381\) 0 0
\(382\) 6.02607e8 + 3.11664e8i 0.0282996 + 0.0146364i
\(383\) 4.10535e9i 0.190790i 0.995440 + 0.0953950i \(0.0304114\pi\)
−0.995440 + 0.0953950i \(0.969589\pi\)
\(384\) 0 0
\(385\) 1.58046e10 0.719352
\(386\) 3.09555e9 5.98530e9i 0.139440 0.269610i
\(387\) 0 0
\(388\) −1.16471e10 1.64469e10i −0.513913 0.725699i
\(389\) 1.37663e9 0.0601199 0.0300599 0.999548i \(-0.490430\pi\)
0.0300599 + 0.999548i \(0.490430\pi\)
\(390\) 0 0
\(391\) 1.18670e10i 0.507732i
\(392\) 2.74700e10 3.83965e9i 1.16336 0.162610i
\(393\) 0 0
\(394\) 1.42553e10 2.75629e10i 0.591551 1.14377i
\(395\) 1.49110e10i 0.612516i
\(396\) 0 0
\(397\) −3.04208e10 −1.22464 −0.612321 0.790610i \(-0.709764\pi\)
−0.612321 + 0.790610i \(0.709764\pi\)
\(398\) 3.00231e9 + 1.55277e9i 0.119653 + 0.0618835i
\(399\) 0 0
\(400\) −1.69988e9 + 4.82958e9i −0.0664014 + 0.188655i
\(401\) 1.95473e10 0.755977 0.377989 0.925810i \(-0.376616\pi\)
0.377989 + 0.925810i \(0.376616\pi\)
\(402\) 0 0
\(403\) 2.86785e10i 1.08727i
\(404\) −1.72286e9 2.43286e9i −0.0646732 0.0913254i
\(405\) 0 0
\(406\) 6.67175e10 + 3.45058e10i 2.45548 + 1.26995i
\(407\) 4.74477e10i 1.72917i
\(408\) 0 0
\(409\) −4.37475e10 −1.56336 −0.781681 0.623678i \(-0.785638\pi\)
−0.781681 + 0.623678i \(0.785638\pi\)
\(410\) 1.01094e10 1.95466e10i 0.357757 0.691729i
\(411\) 0 0
\(412\) −1.43855e10 + 1.01873e10i −0.499271 + 0.353565i
\(413\) −2.36824e10 −0.814002
\(414\) 0 0
\(415\) 1.74071e9i 0.0586860i
\(416\) −1.73736e10 1.84611e10i −0.580118 0.616431i
\(417\) 0 0
\(418\) 5.97697e9 1.15566e10i 0.195784 0.378551i
\(419\) 1.93115e10i 0.626555i 0.949662 + 0.313277i \(0.101427\pi\)
−0.949662 + 0.313277i \(0.898573\pi\)
\(420\) 0 0
\(421\) −3.65545e10 −1.16362 −0.581812 0.813323i \(-0.697656\pi\)
−0.581812 + 0.813323i \(0.697656\pi\)
\(422\) 2.86233e10 + 1.48038e10i 0.902547 + 0.466791i
\(423\) 0 0
\(424\) −2.23259e10 + 3.12062e9i −0.690788 + 0.0965557i
\(425\) −3.42266e9 −0.104908
\(426\) 0 0
\(427\) 8.87121e9i 0.266853i
\(428\) −1.60803e10 + 1.13875e10i −0.479202 + 0.339353i
\(429\) 0 0
\(430\) −1.13699e10 5.88043e9i −0.332570 0.172003i
\(431\) 3.98669e10i 1.15532i −0.816276 0.577662i \(-0.803965\pi\)
0.816276 0.577662i \(-0.196035\pi\)
\(432\) 0 0
\(433\) 3.21564e10 0.914779 0.457389 0.889266i \(-0.348785\pi\)
0.457389 + 0.889266i \(0.348785\pi\)
\(434\) −3.08714e10 + 5.96904e10i −0.870157 + 1.68246i
\(435\) 0 0
\(436\) 6.35416e8 + 8.97275e8i 0.0175838 + 0.0248302i
\(437\) 1.37927e10 0.378201
\(438\) 0 0
\(439\) 2.72016e10i 0.732379i 0.930540 + 0.366189i \(0.119338\pi\)
−0.930540 + 0.366189i \(0.880662\pi\)
\(440\) 2.53097e9 + 1.81073e10i 0.0675268 + 0.483107i
\(441\) 0 0
\(442\) 7.78507e9 1.50526e10i 0.203973 0.394386i
\(443\) 1.32228e10i 0.343327i 0.985156 + 0.171663i \(0.0549142\pi\)
−0.985156 + 0.171663i \(0.945086\pi\)
\(444\) 0 0
\(445\) −1.07142e10 −0.273224
\(446\) −1.28881e10 6.66564e9i −0.325724 0.168462i
\(447\) 0 0
\(448\) 1.62880e10 + 5.71264e10i 0.404349 + 1.41816i
\(449\) −2.82958e10 −0.696203 −0.348102 0.937457i \(-0.613174\pi\)
−0.348102 + 0.937457i \(0.613174\pi\)
\(450\) 0 0
\(451\) 7.85831e10i 1.89943i
\(452\) −3.46657e10 4.89516e10i −0.830512 1.17277i
\(453\) 0 0
\(454\) −1.32350e9 6.84502e8i −0.0311530 0.0161121i
\(455\) 2.39261e10i 0.558248i
\(456\) 0 0
\(457\) 7.89688e10 1.81047 0.905234 0.424914i \(-0.139696\pi\)
0.905234 + 0.424914i \(0.139696\pi\)
\(458\) −3.80623e9 + 7.35942e9i −0.0865035 + 0.167256i
\(459\) 0 0
\(460\) −1.58176e10 + 1.12015e10i −0.353273 + 0.250174i
\(461\) −2.63713e10 −0.583885 −0.291943 0.956436i \(-0.594302\pi\)
−0.291943 + 0.956436i \(0.594302\pi\)
\(462\) 0 0
\(463\) 2.74281e10i 0.596858i 0.954432 + 0.298429i \(0.0964627\pi\)
−0.954432 + 0.298429i \(0.903537\pi\)
\(464\) −2.88489e10 + 8.19638e10i −0.622383 + 1.76828i
\(465\) 0 0
\(466\) 8.85093e9 1.71134e10i 0.187692 0.362905i
\(467\) 8.24023e10i 1.73249i −0.499616 0.866247i \(-0.666525\pi\)
0.499616 0.866247i \(-0.333475\pi\)
\(468\) 0 0
\(469\) −1.36925e10 −0.283004
\(470\) 5.04345e7 + 2.60843e7i 0.00103356 + 0.000534550i
\(471\) 0 0
\(472\) −3.79252e9 2.71328e10i −0.0764118 0.546673i
\(473\) −4.57104e10 −0.913209
\(474\) 0 0
\(475\) 3.97805e9i 0.0781441i
\(476\) −3.24071e10 + 2.29495e10i −0.631266 + 0.447039i
\(477\) 0 0
\(478\) 3.01415e10 + 1.55890e10i 0.577369 + 0.298611i
\(479\) 1.28142e10i 0.243415i −0.992566 0.121708i \(-0.961163\pi\)
0.992566 0.121708i \(-0.0388370\pi\)
\(480\) 0 0
\(481\) −7.18296e10 −1.34191
\(482\) −5.03819e9 + 9.74143e9i −0.0933441 + 0.180482i
\(483\) 0 0
\(484\) 6.01810e9 + 8.49820e9i 0.109668 + 0.154862i
\(485\) 2.20039e10 0.397680
\(486\) 0 0
\(487\) 2.27188e10i 0.403895i 0.979396 + 0.201948i \(0.0647271\pi\)
−0.979396 + 0.201948i \(0.935273\pi\)
\(488\) 1.01637e10 1.42064e9i 0.179215 0.0250499i
\(489\) 0 0
\(490\) −1.39122e10 + 2.68995e10i −0.241330 + 0.466615i
\(491\) 8.70411e10i 1.49761i −0.662791 0.748805i \(-0.730628\pi\)
0.662791 0.748805i \(-0.269372\pi\)
\(492\) 0 0
\(493\) −5.80866e10 −0.983305
\(494\) −1.74951e10 9.04835e9i −0.293772 0.151936i
\(495\) 0 0
\(496\) −7.33308e10 2.58104e10i −1.21160 0.426449i
\(497\) 1.13904e11 1.86688
\(498\) 0 0
\(499\) 1.34972e10i 0.217691i 0.994059 + 0.108846i \(0.0347154\pi\)
−0.994059 + 0.108846i \(0.965285\pi\)
\(500\) −3.23070e9 4.56208e9i −0.0516911 0.0729933i
\(501\) 0 0
\(502\) 6.31313e10 + 3.26510e10i 0.994100 + 0.514141i
\(503\) 4.13249e10i 0.645565i 0.946473 + 0.322782i \(0.104618\pi\)
−0.946473 + 0.322782i \(0.895382\pi\)
\(504\) 0 0
\(505\) 3.25487e9 0.0500459
\(506\) −3.17957e10 + 6.14776e10i −0.485028 + 0.937810i
\(507\) 0 0
\(508\) −6.14942e10 + 4.35479e10i −0.923377 + 0.653901i
\(509\) 3.37390e9 0.0502645 0.0251322 0.999684i \(-0.491999\pi\)
0.0251322 + 0.999684i \(0.491999\pi\)
\(510\) 0 0
\(511\) 6.77557e10i 0.993715i
\(512\) −6.28411e10 + 2.78094e10i −0.914458 + 0.404680i
\(513\) 0 0
\(514\) −1.25822e10 + 2.43279e10i −0.180262 + 0.348539i
\(515\) 1.92461e10i 0.273598i
\(516\) 0 0
\(517\) 2.02761e8 0.00283807
\(518\) 1.49504e11 + 7.73221e10i 2.07650 + 1.07395i
\(519\) 0 0
\(520\) 2.74121e10 3.83156e9i 0.374912 0.0524037i
\(521\) −1.24497e11 −1.68969 −0.844847 0.535007i \(-0.820309\pi\)
−0.844847 + 0.535007i \(0.820309\pi\)
\(522\) 0 0
\(523\) 4.47960e10i 0.598733i 0.954138 + 0.299366i \(0.0967753\pi\)
−0.954138 + 0.299366i \(0.903225\pi\)
\(524\) 7.17254e10 5.07932e10i 0.951367 0.673722i
\(525\) 0 0
\(526\) −3.56142e10 1.84194e10i −0.465244 0.240621i
\(527\) 5.19686e10i 0.673749i
\(528\) 0 0
\(529\) 4.93792e9 0.0630553
\(530\) 1.13069e10 2.18622e10i 0.143298 0.277070i
\(531\) 0 0
\(532\) 2.66735e10 + 3.76658e10i 0.332992 + 0.470220i
\(533\) −1.18964e11 −1.47404
\(534\) 0 0
\(535\) 2.15135e10i 0.262601i
\(536\) −2.19274e9 1.56875e10i −0.0265661 0.190061i
\(537\) 0 0
\(538\) −2.66700e9 + 5.15670e9i −0.0318342 + 0.0615520i
\(539\) 1.08144e11i 1.28129i
\(540\) 0 0
\(541\) −8.68526e10 −1.01390 −0.506948 0.861977i \(-0.669226\pi\)
−0.506948 + 0.861977i \(0.669226\pi\)
\(542\) 1.50164e11 + 7.76638e10i 1.74008 + 0.899957i
\(543\) 0 0
\(544\) −3.14829e10 3.34536e10i −0.359483 0.381985i
\(545\) −1.20044e9 −0.0136068
\(546\) 0 0
\(547\) 1.65768e11i 1.85162i −0.377993 0.925808i \(-0.623386\pi\)
0.377993 0.925808i \(-0.376614\pi\)
\(548\) 3.01133e10 + 4.25232e10i 0.333916 + 0.471524i
\(549\) 0 0
\(550\) −1.77312e10 9.17045e9i −0.193771 0.100217i
\(551\) 6.75124e10i 0.732448i
\(552\) 0 0
\(553\) −1.88886e11 −2.01976
\(554\) −1.00130e10 + 1.93603e10i −0.106298 + 0.205529i
\(555\) 0 0
\(556\) 5.25025e10 3.71803e10i 0.549390 0.389057i
\(557\) 9.73769e10 1.01166 0.505831 0.862633i \(-0.331186\pi\)
0.505831 + 0.862633i \(0.331186\pi\)
\(558\) 0 0
\(559\) 6.91995e10i 0.708689i
\(560\) −6.11791e10 2.15333e10i −0.622087 0.218957i
\(561\) 0 0
\(562\) 2.21608e10 4.28484e10i 0.222147 0.429525i
\(563\) 1.96004e9i 0.0195088i 0.999952 + 0.00975440i \(0.00310497\pi\)
−0.999952 + 0.00975440i \(0.996895\pi\)
\(564\) 0 0
\(565\) 6.54913e10 0.642673
\(566\) −1.96435e10 1.01595e10i −0.191405 0.0989934i
\(567\) 0 0
\(568\) 1.82408e10 + 1.30500e11i 0.175247 + 1.25377i
\(569\) −7.88598e10 −0.752327 −0.376164 0.926553i \(-0.622757\pi\)
−0.376164 + 0.926553i \(0.622757\pi\)
\(570\) 0 0
\(571\) 5.71331e10i 0.537457i 0.963216 + 0.268728i \(0.0866034\pi\)
−0.963216 + 0.268728i \(0.913397\pi\)
\(572\) 8.06617e10 5.71216e10i 0.753500 0.533601i
\(573\) 0 0
\(574\) 2.47608e11 + 1.28061e11i 2.28096 + 1.17970i
\(575\) 2.11621e10i 0.193592i
\(576\) 0 0
\(577\) 1.51459e11 1.36644 0.683221 0.730212i \(-0.260579\pi\)
0.683221 + 0.730212i \(0.260579\pi\)
\(578\) −3.71659e10 + 7.18610e10i −0.332992 + 0.643845i
\(579\) 0 0
\(580\) −5.48288e10 7.74241e10i −0.484503 0.684170i
\(581\) 2.20506e10 0.193516
\(582\) 0 0
\(583\) 8.78922e10i 0.760810i
\(584\) −7.76274e10 + 1.08505e10i −0.667365 + 0.0932817i
\(585\) 0 0
\(586\) −4.31274e10 + 8.33875e10i −0.365732 + 0.707148i
\(587\) 1.33645e11i 1.12564i 0.826580 + 0.562819i \(0.190283\pi\)
−0.826580 + 0.562819i \(0.809717\pi\)
\(588\) 0 0
\(589\) −6.04015e10 −0.501865
\(590\) 2.65693e10 + 1.37414e10i 0.219266 + 0.113403i
\(591\) 0 0
\(592\) −6.46460e10 + 1.83668e11i −0.526326 + 1.49536i
\(593\) 1.58419e11 1.28112 0.640558 0.767910i \(-0.278703\pi\)
0.640558 + 0.767910i \(0.278703\pi\)
\(594\) 0 0
\(595\) 4.33568e10i 0.345931i
\(596\) 1.13185e11 + 1.59829e11i 0.897020 + 1.26669i
\(597\) 0 0
\(598\) 9.30690e10 + 4.81346e10i 0.727781 + 0.376403i
\(599\) 4.31245e10i 0.334978i 0.985874 + 0.167489i \(0.0535659\pi\)
−0.985874 + 0.167489i \(0.946434\pi\)
\(600\) 0 0
\(601\) 4.15092e10 0.318160 0.159080 0.987266i \(-0.449147\pi\)
0.159080 + 0.987266i \(0.449147\pi\)
\(602\) 7.44909e10 1.44029e11i 0.567175 1.09664i
\(603\) 0 0
\(604\) −1.07089e11 + 7.58363e10i −0.804630 + 0.569809i
\(605\) −1.13696e10 −0.0848637
\(606\) 0 0
\(607\) 2.83174e10i 0.208592i 0.994546 + 0.104296i \(0.0332590\pi\)
−0.994546 + 0.104296i \(0.966741\pi\)
\(608\) −3.88821e10 + 3.65916e10i −0.284535 + 0.267773i
\(609\) 0 0
\(610\) −5.14742e9 + 9.95262e9i −0.0371766 + 0.0718816i
\(611\) 3.06954e8i 0.00220246i
\(612\) 0 0
\(613\) 2.40024e11 1.69986 0.849928 0.526899i \(-0.176645\pi\)
0.849928 + 0.526899i \(0.176645\pi\)
\(614\) 8.23410e10 + 4.25861e10i 0.579352 + 0.299636i
\(615\) 0 0
\(616\) −2.29376e11 + 3.20613e10i −1.59303 + 0.222668i
\(617\) 1.16795e10 0.0805904 0.0402952 0.999188i \(-0.487170\pi\)
0.0402952 + 0.999188i \(0.487170\pi\)
\(618\) 0 0
\(619\) 2.19401e11i 1.49443i 0.664583 + 0.747215i \(0.268609\pi\)
−0.664583 + 0.747215i \(0.731391\pi\)
\(620\) 6.92693e10 4.90539e10i 0.468785 0.331976i
\(621\) 0 0
\(622\) −1.18989e11 6.15404e10i −0.794963 0.411149i
\(623\) 1.35723e11i 0.900948i
\(624\) 0 0
\(625\) 6.10352e9 0.0400000
\(626\) 9.02396e10 1.74480e11i 0.587624 1.13618i
\(627\) 0 0
\(628\) −1.73057e11 2.44375e11i −1.11263 1.57115i
\(629\) −1.30163e11 −0.831544
\(630\) 0 0
\(631\) 2.35335e10i 0.148446i 0.997242 + 0.0742230i \(0.0236477\pi\)
−0.997242 + 0.0742230i \(0.976352\pi\)
\(632\) −3.02484e10 2.16406e11i −0.189598 1.35644i
\(633\) 0 0
\(634\) 1.01759e11 1.96752e11i 0.629817 1.21776i
\(635\) 8.22718e10i 0.506006i
\(636\) 0 0
\(637\) 1.63715e11 0.994332
\(638\) −3.00920e11 1.55634e11i −1.81622 0.939336i
\(639\) 0 0
\(640\) 1.48734e10 7.35410e10i 0.0886521 0.438339i
\(641\) 8.47231e10 0.501845 0.250923 0.968007i \(-0.419266\pi\)
0.250923 + 0.968007i \(0.419266\pi\)
\(642\) 0 0
\(643\) 2.37102e11i 1.38705i −0.720435 0.693523i \(-0.756058\pi\)
0.720435 0.693523i \(-0.243942\pi\)
\(644\) −1.41895e11 2.00371e11i −0.824944 1.16491i
\(645\) 0 0
\(646\) −3.17031e10 1.63966e10i −0.182042 0.0941508i
\(647\) 2.88712e11i 1.64758i −0.566892 0.823792i \(-0.691854\pi\)
0.566892 0.823792i \(-0.308146\pi\)
\(648\) 0 0
\(649\) 1.06816e11 0.602086
\(650\) −1.38829e10 + 2.68427e10i −0.0777724 + 0.150374i
\(651\) 0 0
\(652\) 1.83696e11 1.30086e11i 1.01650 0.719850i
\(653\) −7.01205e10 −0.385649 −0.192824 0.981233i \(-0.561765\pi\)
−0.192824 + 0.981233i \(0.561765\pi\)
\(654\) 0 0
\(655\) 9.59600e10i 0.521345i
\(656\) −1.07067e11 + 3.04192e11i −0.578149 + 1.64260i
\(657\) 0 0
\(658\) −3.30426e8 + 6.38884e8i −0.00176267 + 0.00340815i
\(659\) 1.30280e11i 0.690774i 0.938460 + 0.345387i \(0.112252\pi\)
−0.938460 + 0.345387i \(0.887748\pi\)
\(660\) 0 0
\(661\) −9.13098e10 −0.478312 −0.239156 0.970981i \(-0.576871\pi\)
−0.239156 + 0.970981i \(0.576871\pi\)
\(662\) −1.09678e11 5.67246e10i −0.571067 0.295352i
\(663\) 0 0
\(664\) 3.53121e9 + 2.52633e10i 0.0181656 + 0.129962i
\(665\) −5.03923e10 −0.257678
\(666\) 0 0
\(667\) 3.59146e11i 1.81454i
\(668\) −9.67962e10 + 6.85474e10i −0.486130 + 0.344259i
\(669\) 0 0
\(670\) 1.53617e10 + 7.94493e9i 0.0762323 + 0.0394267i
\(671\) 4.00124e10i 0.197381i
\(672\) 0 0
\(673\) −2.19105e11 −1.06805 −0.534026 0.845468i \(-0.679321\pi\)
−0.534026 + 0.845468i \(0.679321\pi\)
\(674\) −1.08627e11 + 2.10031e11i −0.526377 + 1.01776i
\(675\) 0 0
\(676\) 3.42117e10 + 4.83105e10i 0.163828 + 0.231342i
\(677\) 8.12354e10 0.386715 0.193357 0.981128i \(-0.438062\pi\)
0.193357 + 0.981128i \(0.438062\pi\)
\(678\) 0 0
\(679\) 2.78737e11i 1.31134i
\(680\) 4.96737e10 6.94320e9i 0.232322 0.0324731i
\(681\) 0 0
\(682\) 1.39241e11 2.69225e11i 0.643622 1.24445i
\(683\) 2.91761e11i 1.34074i 0.742028 + 0.670369i \(0.233864\pi\)
−0.742028 + 0.670369i \(0.766136\pi\)
\(684\) 0 0
\(685\) −5.68909e10 −0.258393
\(686\) −5.06688e10 2.62055e10i −0.228794 0.118330i
\(687\) 0 0
\(688\) 1.76943e11 + 6.22789e10i 0.789732 + 0.277963i
\(689\) −1.33057e11 −0.590421
\(690\) 0 0
\(691\) 1.35594e11i 0.594743i −0.954762 0.297371i \(-0.903890\pi\)
0.954762 0.297371i \(-0.0961100\pi\)
\(692\) 6.97845e10 + 9.85430e10i 0.304323 + 0.429736i
\(693\) 0 0
\(694\) −3.83574e11 1.98381e11i −1.65353 0.855191i
\(695\) 7.02420e10i 0.301063i
\(696\) 0 0
\(697\) −2.15577e11 −0.913420
\(698\) 1.48972e11 2.88040e11i 0.627601 1.21348i
\(699\) 0 0
\(700\) 5.77906e10 4.09251e10i 0.240694 0.170450i
\(701\) −1.48441e11 −0.614725 −0.307363 0.951592i \(-0.599446\pi\)
−0.307363 + 0.951592i \(0.599446\pi\)
\(702\) 0 0
\(703\) 1.51285e11i 0.619404i
\(704\) −7.34650e10 2.57661e11i −0.299082 1.04896i
\(705\) 0 0
\(706\) −6.92204e10 + 1.33839e11i −0.278622 + 0.538720i
\(707\) 4.12314e10i 0.165025i
\(708\) 0 0
\(709\) 4.79726e11 1.89849 0.949245 0.314536i \(-0.101849\pi\)
0.949245 + 0.314536i \(0.101849\pi\)
\(710\) −1.27789e11 6.60917e10i −0.502877 0.260084i
\(711\) 0 0
\(712\) 1.55497e11 2.17347e10i 0.605064 0.0845735i
\(713\) 3.21318e11 1.24330
\(714\) 0 0
\(715\) 1.07916e11i 0.412915i
\(716\) 1.73563e11 1.22911e11i 0.660399 0.467669i
\(717\) 0 0
\(718\) −4.69512e10 2.42828e10i −0.176664 0.0913695i
\(719\) 4.02314e11i 1.50539i 0.658368 + 0.752696i \(0.271247\pi\)
−0.658368 + 0.752696i \(0.728753\pi\)
\(720\) 0 0
\(721\) 2.43801e11 0.902184
\(722\) 1.05776e11 2.04519e11i 0.389257 0.752635i
\(723\) 0 0
\(724\) −9.16917e10 1.29478e11i −0.333715 0.471241i
\(725\) 1.03584e11 0.374922
\(726\) 0 0
\(727\) 3.49293e11i 1.25041i 0.780461 + 0.625204i \(0.214984\pi\)
−0.780461 + 0.625204i \(0.785016\pi\)
\(728\) 4.85366e10 + 3.47245e11i 0.172800 + 1.23626i
\(729\) 0 0
\(730\) 3.93144e10 7.60151e10i 0.138440 0.267675i
\(731\) 1.25397e11i 0.439155i
\(732\) 0 0
\(733\) −1.75651e11 −0.608464 −0.304232 0.952598i \(-0.598400\pi\)
−0.304232 + 0.952598i \(0.598400\pi\)
\(734\) −1.62769e11 8.41829e10i −0.560774 0.290028i
\(735\) 0 0
\(736\) 2.06841e11 1.94657e11i 0.704898 0.663373i
\(737\) 6.17583e10 0.209327
\(738\) 0 0
\(739\) 1.85701e11i 0.622640i −0.950305 0.311320i \(-0.899229\pi\)
0.950305 0.311320i \(-0.100771\pi\)
\(740\) −1.22863e11 1.73495e11i −0.409726 0.578576i
\(741\) 0 0
\(742\) 2.76941e11 + 1.43232e11i 0.913632 + 0.472523i
\(743\) 2.85901e11i 0.938126i −0.883165 0.469063i \(-0.844592\pi\)
0.883165 0.469063i \(-0.155408\pi\)
\(744\) 0 0
\(745\) −2.13831e11 −0.694138
\(746\) 1.66445e11 3.21824e11i 0.537422 1.03911i
\(747\) 0 0
\(748\) 1.46168e11 1.03511e11i 0.466924 0.330658i
\(749\) 2.72524e11 0.865919
\(750\) 0 0
\(751\) 6.18679e11i 1.94494i −0.233031 0.972469i \(-0.574864\pi\)
0.233031 0.972469i \(-0.425136\pi\)
\(752\) −7.84881e8 2.76256e8i −0.00245433 0.000863854i
\(753\) 0 0
\(754\) −2.35609e11 + 4.55554e11i −0.728964 + 1.40946i
\(755\) 1.43272e11i 0.440934i
\(756\) 0 0
\(757\) 9.34034e10 0.284433 0.142216 0.989836i \(-0.454577\pi\)
0.142216 + 0.989836i \(0.454577\pi\)
\(758\) 7.98360e10 + 4.12905e10i 0.241836 + 0.125076i
\(759\) 0 0
\(760\) −8.06988e9 5.77343e10i −0.0241887 0.173053i
\(761\) 3.21388e11 0.958276 0.479138 0.877740i \(-0.340949\pi\)
0.479138 + 0.877740i \(0.340949\pi\)
\(762\) 0 0
\(763\) 1.52067e10i 0.0448681i
\(764\) 8.85859e9 6.27332e9i 0.0260011 0.0184130i
\(765\) 0 0
\(766\) 5.83443e10 + 3.01752e10i 0.169466 + 0.0876467i
\(767\) 1.61706e11i 0.467245i
\(768\) 0 0
\(769\) 2.44957e10 0.0700461 0.0350231 0.999387i \(-0.488850\pi\)
0.0350231 + 0.999387i \(0.488850\pi\)
\(770\) 1.16168e11 2.24612e11i 0.330462 0.638954i
\(771\) 0 0
\(772\) −6.23087e10 8.79865e10i −0.175420 0.247712i
\(773\) −1.61194e11 −0.451472 −0.225736 0.974189i \(-0.572479\pi\)
−0.225736 + 0.974189i \(0.572479\pi\)
\(774\) 0 0
\(775\) 9.26739e10i 0.256892i
\(776\) −3.19348e11 + 4.46372e10i −0.880678 + 0.123098i
\(777\) 0 0
\(778\) 1.01185e10 1.95643e10i 0.0276184 0.0534006i
\(779\) 2.50558e11i 0.680392i
\(780\) 0 0
\(781\) −5.13751e11 −1.38086
\(782\) 1.68651e11 + 8.72252e10i 0.450986 + 0.233246i
\(783\) 0 0
\(784\) 1.47342e11 4.18620e11i 0.389999 1.10804i
\(785\) 3.26945e11 0.860985
\(786\) 0 0
\(787\) 4.76190e11i 1.24131i 0.784083 + 0.620657i \(0.213134\pi\)
−0.784083 + 0.620657i \(0.786866\pi\)
\(788\) −2.86938e11 4.05187e11i −0.744189 1.05087i
\(789\) 0 0
\(790\) 2.11911e11 + 1.09599e11i 0.544059 + 0.281383i
\(791\) 8.29617e11i 2.11920i
\(792\) 0 0
\(793\) 6.05735e10 0.153176
\(794\) −2.23600e11 + 4.32334e11i −0.562586 + 1.08777i
\(795\) 0 0
\(796\) 4.41352e10 3.12549e10i 0.109934 0.0778512i
\(797\) 1.59422e11 0.395107 0.197553 0.980292i \(-0.436700\pi\)
0.197553 + 0.980292i \(0.436700\pi\)
\(798\) 0 0
\(799\) 5.56235e8i 0.00136481i
\(800\) 5.61424e10 + 5.96567e10i 0.137066 + 0.145646i
\(801\) 0 0
\(802\) 1.43677e11 2.77801e11i 0.347287 0.671486i
\(803\) 3.05603e11i 0.735013i
\(804\) 0 0
\(805\) 2.68072e11 0.638364
\(806\) −4.07572e11 2.10793e11i −0.965748 0.499478i
\(807\) 0 0
\(808\) −4.72386e10 + 6.60283e9i −0.110829 + 0.0154912i
\(809\) 4.86253e11 1.13519 0.567594 0.823308i \(-0.307874\pi\)
0.567594 + 0.823308i \(0.307874\pi\)
\(810\) 0 0
\(811\) 3.39760e11i 0.785396i 0.919667 + 0.392698i \(0.128458\pi\)
−0.919667 + 0.392698i \(0.871542\pi\)
\(812\) 9.80776e11 6.94548e11i 2.25603 1.59764i
\(813\) 0 0
\(814\) −6.74315e11 3.48751e11i −1.53591 0.794360i
\(815\) 2.45763e11i 0.557039i
\(816\) 0 0
\(817\) 1.45745e11 0.327120
\(818\) −3.21553e11 + 6.21729e11i −0.718191 + 1.38863i
\(819\) 0 0
\(820\) −2.03486e11 2.87344e11i −0.450069 0.635545i
\(821\) −6.74268e11 −1.48409 −0.742044 0.670351i \(-0.766144\pi\)
−0.742044 + 0.670351i \(0.766144\pi\)
\(822\) 0 0
\(823\) 3.11660e11i 0.679332i −0.940546 0.339666i \(-0.889686\pi\)
0.940546 0.339666i \(-0.110314\pi\)
\(824\) 3.90426e10 + 2.79322e11i 0.0846896 + 0.605894i
\(825\) 0 0
\(826\) −1.74071e11 + 3.36569e11i −0.373943 + 0.723026i
\(827\) 3.10210e11i 0.663183i 0.943423 + 0.331592i \(0.107586\pi\)
−0.943423 + 0.331592i \(0.892414\pi\)
\(828\) 0 0
\(829\) −3.09076e11 −0.654406 −0.327203 0.944954i \(-0.606106\pi\)
−0.327203 + 0.944954i \(0.606106\pi\)
\(830\) −2.47386e10 1.27946e10i −0.0521270 0.0269597i
\(831\) 0 0
\(832\) −3.90065e11 + 1.11216e11i −0.814035 + 0.232100i
\(833\) 2.96670e11 0.616160
\(834\) 0 0
\(835\) 1.29502e11i 0.266397i
\(836\) −1.20307e11 1.69887e11i −0.246302 0.347804i
\(837\) 0 0
\(838\) 2.74450e11 + 1.41943e11i 0.556528 + 0.287832i
\(839\) 5.22492e11i 1.05446i −0.849722 0.527232i \(-0.823230\pi\)
0.849722 0.527232i \(-0.176770\pi\)
\(840\) 0 0
\(841\) 1.25770e12 2.51416
\(842\) −2.68684e11 + 5.19504e11i −0.534556 + 1.03357i
\(843\) 0 0
\(844\) 4.20775e11 2.97977e11i 0.829240 0.587236i
\(845\) −6.46336e10 −0.126774
\(846\) 0 0
\(847\) 1.44025e11i 0.279836i
\(848\) −1.19750e11 + 3.40227e11i −0.231576 + 0.657939i
\(849\) 0 0
\(850\) −2.51573e10 + 4.86420e10i −0.0481934 + 0.0931828i
\(851\) 8.04790e11i 1.53449i
\(852\) 0 0
\(853\) −5.25270e11 −0.992171 −0.496086 0.868274i \(-0.665230\pi\)
−0.496086 + 0.868274i \(0.665230\pi\)
\(854\) −1.26076e11 6.52053e10i −0.237028 0.122589i
\(855\) 0 0
\(856\) 4.36422e10 + 3.12230e11i 0.0812853 + 0.581539i
\(857\) −3.18270e11 −0.590028 −0.295014 0.955493i \(-0.595324\pi\)
−0.295014 + 0.955493i \(0.595324\pi\)
\(858\) 0 0
\(859\) 8.61467e11i 1.58222i 0.611676 + 0.791108i \(0.290496\pi\)
−0.611676 + 0.791108i \(0.709504\pi\)
\(860\) −1.67143e11 + 1.18364e11i −0.305558 + 0.216385i
\(861\) 0 0
\(862\) −5.66579e11 2.93031e11i −1.02620 0.530742i
\(863\) 1.40931e11i 0.254075i 0.991898 + 0.127038i \(0.0405469\pi\)
−0.991898 + 0.127038i \(0.959453\pi\)
\(864\) 0 0
\(865\) −1.31839e11 −0.235493
\(866\) 2.36357e11 4.57000e11i 0.420239 0.812539i
\(867\) 0 0
\(868\) 6.21394e11 + 8.77474e11i 1.09468 + 1.54581i
\(869\) 8.51945e11 1.49394
\(870\) 0 0
\(871\) 9.34940e10i 0.162447i
\(872\) 1.74223e10 2.43522e9i 0.0301328 0.00421185i
\(873\) 0 0
\(874\) 1.01379e11 1.96018e11i 0.173741 0.335932i
\(875\) 7.73168e10i 0.131899i
\(876\) 0 0
\(877\) −4.00362e11 −0.676790 −0.338395 0.941004i \(-0.609884\pi\)
−0.338395 + 0.941004i \(0.609884\pi\)
\(878\) 3.86582e11 + 1.99937e11i 0.650525 + 0.336447i
\(879\) 0 0
\(880\) 2.75940e11 + 9.71231e10i 0.460134 + 0.161954i
\(881\) −4.94890e11 −0.821496 −0.410748 0.911749i \(-0.634732\pi\)
−0.410748 + 0.911749i \(0.634732\pi\)
\(882\) 0 0
\(883\) 7.88039e11i 1.29630i 0.761513 + 0.648149i \(0.224457\pi\)
−0.761513 + 0.648149i \(0.775543\pi\)
\(884\) −1.56701e11 2.21279e11i −0.256604 0.362353i
\(885\) 0 0
\(886\) 1.87919e11 + 9.71903e10i 0.304955 + 0.157720i
\(887\) 2.78785e10i 0.0450375i 0.999746 + 0.0225188i \(0.00716855\pi\)
−0.999746 + 0.0225188i \(0.992831\pi\)
\(888\) 0 0
\(889\) 1.04218e12 1.66854
\(890\) −7.87514e10 + 1.52267e11i −0.125516 + 0.242687i
\(891\) 0 0
\(892\) −1.89461e11 + 1.34169e11i −0.299268 + 0.211930i
\(893\) −6.46496e8 −0.00101662
\(894\) 0 0
\(895\) 2.32207e11i 0.361895i
\(896\) 9.31587e11 + 1.88410e11i 1.44541 + 0.292328i
\(897\) 0 0
\(898\) −2.07980e11 + 4.02133e11i −0.319828 + 0.618392i
\(899\) 1.57279e12i 2.40786i
\(900\) 0 0
\(901\) −2.41114e11 −0.365868
\(902\) −1.11680e12 5.77603e11i −1.68714 0.872576i
\(903\) 0 0
\(904\) −9.50489e11 + 1.32856e11i −1.42322 + 0.198933i
\(905\) 1.73226e11 0.258238
\(906\) 0 0
\(907\) 5.94476e11i 0.878426i −0.898383 0.439213i \(-0.855257\pi\)
0.898383 0.439213i \(-0.144743\pi\)
\(908\) −1.94560e10 + 1.37780e10i −0.0286226 + 0.0202695i
\(909\) 0 0
\(910\) −3.40033e11 1.75862e11i −0.495856 0.256453i
\(911\) 5.11180e11i 0.742165i −0.928600 0.371082i \(-0.878987\pi\)
0.928600 0.371082i \(-0.121013\pi\)
\(912\) 0 0
\(913\) −9.94564e10 −0.143136
\(914\) 5.80438e11 1.12229e12i 0.831708 1.60812i
\(915\) 0 0
\(916\) 7.66137e10 + 1.08187e11i 0.108824 + 0.153671i
\(917\) −1.21558e12 −1.71912
\(918\) 0 0
\(919\) 7.89745e11i 1.10720i 0.832784 + 0.553598i \(0.186746\pi\)
−0.832784 + 0.553598i \(0.813254\pi\)
\(920\) 4.29294e10 + 3.07130e11i 0.0599244 + 0.428717i
\(921\) 0 0
\(922\) −1.93835e11 + 3.74783e11i −0.268230 + 0.518628i
\(923\) 7.77751e11i 1.07160i
\(924\) 0 0
\(925\) 2.32116e11 0.317057
\(926\) 3.89801e11 + 2.01602e11i 0.530151 + 0.274190i
\(927\) 0 0
\(928\) 9.52804e11 + 1.01245e12i 1.28473 + 1.36515i
\(929\) −1.28241e12 −1.72172 −0.860862 0.508839i \(-0.830075\pi\)
−0.860862 + 0.508839i \(0.830075\pi\)
\(930\) 0 0
\(931\) 3.44811e11i 0.458968i
\(932\) −1.78156e11 2.51575e11i −0.236122 0.333429i
\(933\) 0 0
\(934\) −1.17108e12 6.05675e11i −1.53886 0.795888i
\(935\) 1.95555e11i 0.255872i
\(936\) 0 0
\(937\) −4.16365e11 −0.540152 −0.270076 0.962839i \(-0.587049\pi\)
−0.270076 + 0.962839i \(0.587049\pi\)
\(938\) −1.00643e11 + 1.94595e11i −0.130009 + 0.251374i
\(939\) 0 0
\(940\) 7.41409e8 5.25038e8i 0.000949613 0.000672480i
\(941\) 1.33006e12 1.69634 0.848171 0.529723i \(-0.177704\pi\)
0.848171 + 0.529723i \(0.177704\pi\)
\(942\) 0 0
\(943\) 1.33290e12i 1.68558i
\(944\) −4.13482e11 1.45534e11i −0.520677 0.183264i
\(945\) 0 0
\(946\) −3.35981e11 + 6.49625e11i −0.419518 + 0.811145i
\(947\) 1.36285e11i 0.169453i −0.996404 0.0847265i \(-0.972998\pi\)
0.996404 0.0847265i \(-0.0270017\pi\)
\(948\) 0 0
\(949\) −4.62642e11 −0.570401
\(950\) 5.65352e10 + 2.92396e10i 0.0694104 + 0.0358985i
\(951\) 0 0
\(952\) 8.79536e10 + 6.29246e11i 0.107079 + 0.766078i
\(953\) −1.22326e12 −1.48302 −0.741509 0.670943i \(-0.765889\pi\)
−0.741509 + 0.670943i \(0.765889\pi\)
\(954\) 0 0
\(955\) 1.18517e10i 0.0142485i
\(956\) 4.43093e11 3.13782e11i 0.530473 0.375661i
\(957\) 0 0
\(958\) −1.82112e11 9.41868e10i −0.216210 0.111822i
\(959\) 7.20671e11i 0.852045i
\(960\) 0 0
\(961\) −5.54240e11 −0.649837
\(962\) −5.27963e11 + 1.02083e12i −0.616457 + 1.19193i
\(963\) 0 0
\(964\) 1.01411e11 + 1.43203e11i 0.117430 + 0.165823i
\(965\) 1.17715e11 0.135745
\(966\) 0 0
\(967\) 7.99217e10i 0.0914027i −0.998955 0.0457014i \(-0.985448\pi\)
0.998955 0.0457014i \(-0.0145523\pi\)
\(968\) 1.65009e11 2.30643e10i 0.187934 0.0262687i
\(969\) 0 0
\(970\) 1.61734e11 3.12715e11i 0.182690 0.353233i
\(971\) 3.43166e11i 0.386036i 0.981195 + 0.193018i \(0.0618276\pi\)
−0.981195 + 0.193018i \(0.938172\pi\)
\(972\) 0 0
\(973\) −8.89796e11 −0.992748
\(974\) 3.22874e11 + 1.66988e11i 0.358754 + 0.185545i
\(975\) 0 0
\(976\) 5.45156e10 1.54886e11i 0.0600789 0.170692i
\(977\) 2.96831e11 0.325785 0.162893 0.986644i \(-0.447918\pi\)
0.162893 + 0.986644i \(0.447918\pi\)
\(978\) 0 0
\(979\) 6.12158e11i 0.666397i
\(980\) 2.80031e11 + 3.95434e11i 0.303600 + 0.428716i
\(981\) 0 0
\(982\) −1.23701e12 6.39771e11i −1.33023 0.687984i
\(983\) 9.12247e11i 0.977009i −0.872561 0.488504i \(-0.837543\pi\)
0.872561 0.488504i \(-0.162457\pi\)
\(984\) 0 0
\(985\) 5.42091e11 0.575873
\(986\) −4.26949e11 + 8.25513e11i −0.451719 + 0.873407i
\(987\) 0 0
\(988\) −2.57186e11 + 1.82130e11i −0.269911 + 0.191140i
\(989\) −7.75323e11 −0.810396
\(990\) 0 0
\(991\) 9.63646e11i 0.999132i 0.866276 + 0.499566i \(0.166507\pi\)
−0.866276 + 0.499566i \(0.833493\pi\)
\(992\) −9.05808e11 + 8.52449e11i −0.935383 + 0.880281i
\(993\) 0 0
\(994\) 8.37223e11 1.61878e12i 0.857621 1.65822i
\(995\) 5.90475e10i 0.0602434i
\(996\) 0 0
\(997\) −1.13678e12 −1.15052 −0.575261 0.817970i \(-0.695100\pi\)
−0.575261 + 0.817970i \(0.695100\pi\)
\(998\) 1.91819e11 + 9.92073e10i 0.193361 + 0.100005i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 180.9.c.a.91.11 16
3.2 odd 2 20.9.b.a.11.6 yes 16
4.3 odd 2 inner 180.9.c.a.91.12 16
12.11 even 2 20.9.b.a.11.5 16
15.2 even 4 100.9.d.c.99.5 32
15.8 even 4 100.9.d.c.99.28 32
15.14 odd 2 100.9.b.d.51.11 16
24.5 odd 2 320.9.b.d.191.14 16
24.11 even 2 320.9.b.d.191.3 16
60.23 odd 4 100.9.d.c.99.6 32
60.47 odd 4 100.9.d.c.99.27 32
60.59 even 2 100.9.b.d.51.12 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.9.b.a.11.5 16 12.11 even 2
20.9.b.a.11.6 yes 16 3.2 odd 2
100.9.b.d.51.11 16 15.14 odd 2
100.9.b.d.51.12 16 60.59 even 2
100.9.d.c.99.5 32 15.2 even 4
100.9.d.c.99.6 32 60.23 odd 4
100.9.d.c.99.27 32 60.47 odd 4
100.9.d.c.99.28 32 15.8 even 4
180.9.c.a.91.11 16 1.1 even 1 trivial
180.9.c.a.91.12 16 4.3 odd 2 inner
320.9.b.d.191.3 16 24.11 even 2
320.9.b.d.191.14 16 24.5 odd 2