Properties

Label 320.9.b.d.191.14
Level $320$
Weight $9$
Character 320.191
Analytic conductor $130.361$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [320,9,Mod(191,320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(320, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("320.191"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 320.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-38800] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(130.361155220\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 5 x^{15} + 26 x^{14} - 834 x^{13} + 4390 x^{12} - 61783 x^{11} + 466168 x^{10} + \cdots + 206161212459445 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{120}\cdot 5^{16} \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 191.14
Root \(3.05707 + 7.10588i\) of defining polynomial
Character \(\chi\) \(=\) 320.191
Dual form 320.9.b.d.191.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+110.171i q^{3} +279.508 q^{5} +3540.70i q^{7} -5576.56 q^{9} -15969.8i q^{11} +24176.2 q^{13} +30793.6i q^{15} +43810.0 q^{17} -50919.1i q^{19} -390081. q^{21} +270875. i q^{23} +78125.0 q^{25} +108456. i q^{27} +1.32588e6 q^{29} +1.18623e6i q^{31} +1.75941e6 q^{33} +989655. i q^{35} -2.97108e6 q^{37} +2.66351e6i q^{39} -4.92072e6 q^{41} +2.86229e6i q^{43} -1.55870e6 q^{45} -12696.5i q^{47} -6.77174e6 q^{49} +4.82658e6i q^{51} +5.50364e6 q^{53} -4.46371e6i q^{55} +5.60979e6 q^{57} +6.68863e6i q^{59} +2.50550e6 q^{61} -1.97449e7i q^{63} +6.75746e6 q^{65} -3.86718e6i q^{67} -2.98424e7 q^{69} +3.21701e7i q^{71} +1.91362e7 q^{73} +8.60708e6i q^{75} +5.65444e7 q^{77} +5.33471e7i q^{79} -4.85365e7 q^{81} -6.22776e6i q^{83} +1.22453e7 q^{85} +1.46072e8i q^{87} +3.83322e7 q^{89} +8.56008e7i q^{91} -1.30687e8 q^{93} -1.42323e7i q^{95} +7.87237e7 q^{97} +8.90568e7i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 38800 q^{9} - 51392 q^{13} + 27552 q^{17} - 414496 q^{21} + 1250000 q^{25} - 2764896 q^{29} - 5521600 q^{33} - 9009472 q^{37} - 8576448 q^{41} - 1580000 q^{45} - 32803600 q^{49} - 2452032 q^{53}+ \cdots + 171851232 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/320\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(257\) \(261\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 110.171i 1.36013i 0.733151 + 0.680065i \(0.238049\pi\)
−0.733151 + 0.680065i \(0.761951\pi\)
\(4\) 0 0
\(5\) 279.508 0.447214
\(6\) 0 0
\(7\) 3540.70i 1.47468i 0.675524 + 0.737338i \(0.263918\pi\)
−0.675524 + 0.737338i \(0.736082\pi\)
\(8\) 0 0
\(9\) −5576.56 −0.849956
\(10\) 0 0
\(11\) − 15969.8i − 1.09076i −0.838188 0.545381i \(-0.816385\pi\)
0.838188 0.545381i \(-0.183615\pi\)
\(12\) 0 0
\(13\) 24176.2 0.846477 0.423239 0.906018i \(-0.360893\pi\)
0.423239 + 0.906018i \(0.360893\pi\)
\(14\) 0 0
\(15\) 30793.6i 0.608269i
\(16\) 0 0
\(17\) 43810.0 0.524539 0.262269 0.964995i \(-0.415529\pi\)
0.262269 + 0.964995i \(0.415529\pi\)
\(18\) 0 0
\(19\) − 50919.1i − 0.390721i −0.980732 0.195360i \(-0.937412\pi\)
0.980732 0.195360i \(-0.0625876\pi\)
\(20\) 0 0
\(21\) −390081. −2.00575
\(22\) 0 0
\(23\) 270875.i 0.967959i 0.875079 + 0.483980i \(0.160809\pi\)
−0.875079 + 0.483980i \(0.839191\pi\)
\(24\) 0 0
\(25\) 78125.0 0.200000
\(26\) 0 0
\(27\) 108456.i 0.204079i
\(28\) 0 0
\(29\) 1.32588e6 1.87461 0.937305 0.348511i \(-0.113313\pi\)
0.937305 + 0.348511i \(0.113313\pi\)
\(30\) 0 0
\(31\) 1.18623e6i 1.28446i 0.766512 + 0.642230i \(0.221991\pi\)
−0.766512 + 0.642230i \(0.778009\pi\)
\(32\) 0 0
\(33\) 1.75941e6 1.48358
\(34\) 0 0
\(35\) 989655.i 0.659495i
\(36\) 0 0
\(37\) −2.97108e6 −1.58529 −0.792643 0.609686i \(-0.791295\pi\)
−0.792643 + 0.609686i \(0.791295\pi\)
\(38\) 0 0
\(39\) 2.66351e6i 1.15132i
\(40\) 0 0
\(41\) −4.92072e6 −1.74138 −0.870689 0.491834i \(-0.836327\pi\)
−0.870689 + 0.491834i \(0.836327\pi\)
\(42\) 0 0
\(43\) 2.86229e6i 0.837221i 0.908166 + 0.418611i \(0.137483\pi\)
−0.908166 + 0.418611i \(0.862517\pi\)
\(44\) 0 0
\(45\) −1.55870e6 −0.380112
\(46\) 0 0
\(47\) − 12696.5i − 0.00260192i −0.999999 0.00130096i \(-0.999586\pi\)
0.999999 0.00130096i \(-0.000414108\pi\)
\(48\) 0 0
\(49\) −6.77174e6 −1.17467
\(50\) 0 0
\(51\) 4.82658e6i 0.713442i
\(52\) 0 0
\(53\) 5.50364e6 0.697504 0.348752 0.937215i \(-0.386606\pi\)
0.348752 + 0.937215i \(0.386606\pi\)
\(54\) 0 0
\(55\) − 4.46371e6i − 0.487803i
\(56\) 0 0
\(57\) 5.60979e6 0.531431
\(58\) 0 0
\(59\) 6.68863e6i 0.551987i 0.961159 + 0.275994i \(0.0890068\pi\)
−0.961159 + 0.275994i \(0.910993\pi\)
\(60\) 0 0
\(61\) 2.50550e6 0.180957 0.0904784 0.995898i \(-0.471160\pi\)
0.0904784 + 0.995898i \(0.471160\pi\)
\(62\) 0 0
\(63\) − 1.97449e7i − 1.25341i
\(64\) 0 0
\(65\) 6.75746e6 0.378556
\(66\) 0 0
\(67\) − 3.86718e6i − 0.191909i −0.995386 0.0959546i \(-0.969410\pi\)
0.995386 0.0959546i \(-0.0305904\pi\)
\(68\) 0 0
\(69\) −2.98424e7 −1.31655
\(70\) 0 0
\(71\) 3.21701e7i 1.26596i 0.774170 + 0.632978i \(0.218168\pi\)
−0.774170 + 0.632978i \(0.781832\pi\)
\(72\) 0 0
\(73\) 1.91362e7 0.673853 0.336927 0.941531i \(-0.390613\pi\)
0.336927 + 0.941531i \(0.390613\pi\)
\(74\) 0 0
\(75\) 8.60708e6i 0.272026i
\(76\) 0 0
\(77\) 5.65444e7 1.60852
\(78\) 0 0
\(79\) 5.33471e7i 1.36963i 0.728718 + 0.684814i \(0.240116\pi\)
−0.728718 + 0.684814i \(0.759884\pi\)
\(80\) 0 0
\(81\) −4.85365e7 −1.12753
\(82\) 0 0
\(83\) − 6.22776e6i − 0.131226i −0.997845 0.0656129i \(-0.979100\pi\)
0.997845 0.0656129i \(-0.0209003\pi\)
\(84\) 0 0
\(85\) 1.22453e7 0.234581
\(86\) 0 0
\(87\) 1.46072e8i 2.54971i
\(88\) 0 0
\(89\) 3.83322e7 0.610947 0.305473 0.952201i \(-0.401185\pi\)
0.305473 + 0.952201i \(0.401185\pi\)
\(90\) 0 0
\(91\) 8.56008e7i 1.24828i
\(92\) 0 0
\(93\) −1.30687e8 −1.74703
\(94\) 0 0
\(95\) − 1.42323e7i − 0.174736i
\(96\) 0 0
\(97\) 7.87237e7 0.889239 0.444620 0.895720i \(-0.353339\pi\)
0.444620 + 0.895720i \(0.353339\pi\)
\(98\) 0 0
\(99\) 8.90568e7i 0.927100i
\(100\) 0 0
\(101\) 1.16450e7 0.111906 0.0559530 0.998433i \(-0.482180\pi\)
0.0559530 + 0.998433i \(0.482180\pi\)
\(102\) 0 0
\(103\) − 6.88569e7i − 0.611785i −0.952066 0.305892i \(-0.901045\pi\)
0.952066 0.305892i \(-0.0989547\pi\)
\(104\) 0 0
\(105\) −1.09031e8 −0.897000
\(106\) 0 0
\(107\) − 7.69690e7i − 0.587193i −0.955929 0.293596i \(-0.905148\pi\)
0.955929 0.293596i \(-0.0948521\pi\)
\(108\) 0 0
\(109\) 4.29484e6 0.0304257 0.0152129 0.999884i \(-0.495157\pi\)
0.0152129 + 0.999884i \(0.495157\pi\)
\(110\) 0 0
\(111\) − 3.27326e8i − 2.15620i
\(112\) 0 0
\(113\) −2.34309e8 −1.43706 −0.718530 0.695496i \(-0.755185\pi\)
−0.718530 + 0.695496i \(0.755185\pi\)
\(114\) 0 0
\(115\) 7.57118e7i 0.432884i
\(116\) 0 0
\(117\) −1.34820e8 −0.719469
\(118\) 0 0
\(119\) 1.55118e8i 0.773525i
\(120\) 0 0
\(121\) −4.06770e7 −0.189761
\(122\) 0 0
\(123\) − 5.42118e8i − 2.36850i
\(124\) 0 0
\(125\) 2.18366e7 0.0894427
\(126\) 0 0
\(127\) − 2.94344e8i − 1.13146i −0.824589 0.565732i \(-0.808594\pi\)
0.824589 0.565732i \(-0.191406\pi\)
\(128\) 0 0
\(129\) −3.15341e8 −1.13873
\(130\) 0 0
\(131\) 3.43317e8i 1.16576i 0.812558 + 0.582881i \(0.198075\pi\)
−0.812558 + 0.582881i \(0.801925\pi\)
\(132\) 0 0
\(133\) 1.80289e8 0.576186
\(134\) 0 0
\(135\) 3.03144e7i 0.0912670i
\(136\) 0 0
\(137\) 2.03539e8 0.577784 0.288892 0.957362i \(-0.406713\pi\)
0.288892 + 0.957362i \(0.406713\pi\)
\(138\) 0 0
\(139\) − 2.51305e8i − 0.673197i −0.941648 0.336599i \(-0.890723\pi\)
0.941648 0.336599i \(-0.109277\pi\)
\(140\) 0 0
\(141\) 1.39878e6 0.00353895
\(142\) 0 0
\(143\) − 3.86091e8i − 0.923305i
\(144\) 0 0
\(145\) 3.70593e8 0.838351
\(146\) 0 0
\(147\) − 7.46047e8i − 1.59771i
\(148\) 0 0
\(149\) −7.65026e8 −1.55214 −0.776070 0.630647i \(-0.782790\pi\)
−0.776070 + 0.630647i \(0.782790\pi\)
\(150\) 0 0
\(151\) − 5.12585e8i − 0.985958i −0.870041 0.492979i \(-0.835908\pi\)
0.870041 0.492979i \(-0.164092\pi\)
\(152\) 0 0
\(153\) −2.44309e8 −0.445835
\(154\) 0 0
\(155\) 3.31560e8i 0.574428i
\(156\) 0 0
\(157\) −1.16971e9 −1.92522 −0.962610 0.270890i \(-0.912682\pi\)
−0.962610 + 0.270890i \(0.912682\pi\)
\(158\) 0 0
\(159\) 6.06339e8i 0.948696i
\(160\) 0 0
\(161\) −9.59085e8 −1.42743
\(162\) 0 0
\(163\) − 8.79268e8i − 1.24558i −0.782390 0.622789i \(-0.786000\pi\)
0.782390 0.622789i \(-0.214000\pi\)
\(164\) 0 0
\(165\) 4.91769e8 0.663477
\(166\) 0 0
\(167\) 4.63319e8i 0.595682i 0.954616 + 0.297841i \(0.0962665\pi\)
−0.954616 + 0.297841i \(0.903734\pi\)
\(168\) 0 0
\(169\) −2.31240e8 −0.283476
\(170\) 0 0
\(171\) 2.83954e8i 0.332095i
\(172\) 0 0
\(173\) −4.71680e8 −0.526579 −0.263289 0.964717i \(-0.584807\pi\)
−0.263289 + 0.964717i \(0.584807\pi\)
\(174\) 0 0
\(175\) 2.76617e8i 0.294935i
\(176\) 0 0
\(177\) −7.36890e8 −0.750775
\(178\) 0 0
\(179\) 8.30768e8i 0.809222i 0.914489 + 0.404611i \(0.132593\pi\)
−0.914489 + 0.404611i \(0.867407\pi\)
\(180\) 0 0
\(181\) −6.19754e8 −0.577437 −0.288719 0.957414i \(-0.593229\pi\)
−0.288719 + 0.957414i \(0.593229\pi\)
\(182\) 0 0
\(183\) 2.76032e8i 0.246125i
\(184\) 0 0
\(185\) −8.30442e8 −0.708961
\(186\) 0 0
\(187\) − 6.99639e8i − 0.572147i
\(188\) 0 0
\(189\) −3.84010e8 −0.300951
\(190\) 0 0
\(191\) − 4.24020e7i − 0.0318605i −0.999873 0.0159303i \(-0.994929\pi\)
0.999873 0.0159303i \(-0.00507097\pi\)
\(192\) 0 0
\(193\) 4.21151e8 0.303535 0.151767 0.988416i \(-0.451504\pi\)
0.151767 + 0.988416i \(0.451504\pi\)
\(194\) 0 0
\(195\) 7.44474e8i 0.514886i
\(196\) 0 0
\(197\) 1.93944e9 1.28769 0.643846 0.765155i \(-0.277338\pi\)
0.643846 + 0.765155i \(0.277338\pi\)
\(198\) 0 0
\(199\) 2.11255e8i 0.134708i 0.997729 + 0.0673542i \(0.0214557\pi\)
−0.997729 + 0.0673542i \(0.978544\pi\)
\(200\) 0 0
\(201\) 4.26050e8 0.261022
\(202\) 0 0
\(203\) 4.69452e9i 2.76444i
\(204\) 0 0
\(205\) −1.37538e9 −0.778768
\(206\) 0 0
\(207\) − 1.51055e9i − 0.822723i
\(208\) 0 0
\(209\) −8.13170e8 −0.426183
\(210\) 0 0
\(211\) − 2.01406e9i − 1.01611i −0.861324 0.508056i \(-0.830364\pi\)
0.861324 0.508056i \(-0.169636\pi\)
\(212\) 0 0
\(213\) −3.54420e9 −1.72187
\(214\) 0 0
\(215\) 8.00035e8i 0.374417i
\(216\) 0 0
\(217\) −4.20007e9 −1.89416
\(218\) 0 0
\(219\) 2.10825e9i 0.916528i
\(220\) 0 0
\(221\) 1.05916e9 0.444010
\(222\) 0 0
\(223\) − 9.06863e8i − 0.366710i −0.983047 0.183355i \(-0.941304\pi\)
0.983047 0.183355i \(-0.0586957\pi\)
\(224\) 0 0
\(225\) −4.35669e8 −0.169991
\(226\) 0 0
\(227\) − 9.31268e7i − 0.0350729i −0.999846 0.0175364i \(-0.994418\pi\)
0.999846 0.0175364i \(-0.00558230\pi\)
\(228\) 0 0
\(229\) 5.17840e8 0.188301 0.0941507 0.995558i \(-0.469986\pi\)
0.0941507 + 0.995558i \(0.469986\pi\)
\(230\) 0 0
\(231\) 6.22953e9i 2.18780i
\(232\) 0 0
\(233\) −1.20417e9 −0.408569 −0.204284 0.978912i \(-0.565487\pi\)
−0.204284 + 0.978912i \(0.565487\pi\)
\(234\) 0 0
\(235\) − 3.54879e6i − 0.00116361i
\(236\) 0 0
\(237\) −5.87728e9 −1.86287
\(238\) 0 0
\(239\) − 2.12088e9i − 0.650018i −0.945711 0.325009i \(-0.894633\pi\)
0.945711 0.325009i \(-0.105367\pi\)
\(240\) 0 0
\(241\) −6.85448e8 −0.203192 −0.101596 0.994826i \(-0.532395\pi\)
−0.101596 + 0.994826i \(0.532395\pi\)
\(242\) 0 0
\(243\) − 4.63572e9i − 1.32951i
\(244\) 0 0
\(245\) −1.89276e9 −0.525329
\(246\) 0 0
\(247\) − 1.23103e9i − 0.330736i
\(248\) 0 0
\(249\) 6.86116e8 0.178484
\(250\) 0 0
\(251\) 4.44219e9i 1.11919i 0.828768 + 0.559593i \(0.189042\pi\)
−0.828768 + 0.559593i \(0.810958\pi\)
\(252\) 0 0
\(253\) 4.32582e9 1.05581
\(254\) 0 0
\(255\) 1.34907e9i 0.319061i
\(256\) 0 0
\(257\) 1.71181e9 0.392395 0.196198 0.980564i \(-0.437141\pi\)
0.196198 + 0.980564i \(0.437141\pi\)
\(258\) 0 0
\(259\) − 1.05197e10i − 2.33778i
\(260\) 0 0
\(261\) −7.39383e9 −1.59334
\(262\) 0 0
\(263\) 2.50597e9i 0.523785i 0.965097 + 0.261892i \(0.0843465\pi\)
−0.965097 + 0.261892i \(0.915653\pi\)
\(264\) 0 0
\(265\) 1.53831e9 0.311933
\(266\) 0 0
\(267\) 4.22308e9i 0.830967i
\(268\) 0 0
\(269\) −3.62847e8 −0.0692970 −0.0346485 0.999400i \(-0.511031\pi\)
−0.0346485 + 0.999400i \(0.511031\pi\)
\(270\) 0 0
\(271\) 1.05662e10i 1.95903i 0.201368 + 0.979516i \(0.435461\pi\)
−0.201368 + 0.979516i \(0.564539\pi\)
\(272\) 0 0
\(273\) −9.43069e9 −1.69782
\(274\) 0 0
\(275\) − 1.24764e9i − 0.218152i
\(276\) 0 0
\(277\) 1.36227e9 0.231390 0.115695 0.993285i \(-0.463091\pi\)
0.115695 + 0.993285i \(0.463091\pi\)
\(278\) 0 0
\(279\) − 6.61506e9i − 1.09173i
\(280\) 0 0
\(281\) −3.01499e9 −0.483572 −0.241786 0.970330i \(-0.577733\pi\)
−0.241786 + 0.970330i \(0.577733\pi\)
\(282\) 0 0
\(283\) 1.38220e9i 0.215490i 0.994179 + 0.107745i \(0.0343629\pi\)
−0.994179 + 0.107745i \(0.965637\pi\)
\(284\) 0 0
\(285\) 1.56798e9 0.237663
\(286\) 0 0
\(287\) − 1.74228e10i − 2.56797i
\(288\) 0 0
\(289\) −5.05644e9 −0.724859
\(290\) 0 0
\(291\) 8.67304e9i 1.20948i
\(292\) 0 0
\(293\) −5.86750e9 −0.796127 −0.398064 0.917358i \(-0.630318\pi\)
−0.398064 + 0.917358i \(0.630318\pi\)
\(294\) 0 0
\(295\) 1.86953e9i 0.246856i
\(296\) 0 0
\(297\) 1.73203e9 0.222602
\(298\) 0 0
\(299\) 6.54873e9i 0.819355i
\(300\) 0 0
\(301\) −1.01345e10 −1.23463
\(302\) 0 0
\(303\) 1.28293e9i 0.152207i
\(304\) 0 0
\(305\) 7.00308e8 0.0809263
\(306\) 0 0
\(307\) − 5.79386e9i − 0.652250i −0.945327 0.326125i \(-0.894257\pi\)
0.945327 0.326125i \(-0.105743\pi\)
\(308\) 0 0
\(309\) 7.58601e9 0.832107
\(310\) 0 0
\(311\) 8.37260e9i 0.894991i 0.894286 + 0.447496i \(0.147684\pi\)
−0.894286 + 0.447496i \(0.852316\pi\)
\(312\) 0 0
\(313\) 1.22771e10 1.27914 0.639572 0.768731i \(-0.279111\pi\)
0.639572 + 0.768731i \(0.279111\pi\)
\(314\) 0 0
\(315\) − 5.51887e9i − 0.560542i
\(316\) 0 0
\(317\) 1.38443e10 1.37099 0.685495 0.728077i \(-0.259586\pi\)
0.685495 + 0.728077i \(0.259586\pi\)
\(318\) 0 0
\(319\) − 2.11740e10i − 2.04475i
\(320\) 0 0
\(321\) 8.47972e9 0.798659
\(322\) 0 0
\(323\) − 2.23077e9i − 0.204948i
\(324\) 0 0
\(325\) 1.88877e9 0.169295
\(326\) 0 0
\(327\) 4.73165e8i 0.0413830i
\(328\) 0 0
\(329\) 4.49546e7 0.00383699
\(330\) 0 0
\(331\) 7.71740e9i 0.642923i 0.946923 + 0.321462i \(0.104174\pi\)
−0.946923 + 0.321462i \(0.895826\pi\)
\(332\) 0 0
\(333\) 1.65684e10 1.34742
\(334\) 0 0
\(335\) − 1.08091e9i − 0.0858244i
\(336\) 0 0
\(337\) −1.47787e10 −1.14582 −0.572910 0.819618i \(-0.694186\pi\)
−0.572910 + 0.819618i \(0.694186\pi\)
\(338\) 0 0
\(339\) − 2.58139e10i − 1.95459i
\(340\) 0 0
\(341\) 1.89438e10 1.40104
\(342\) 0 0
\(343\) − 3.56527e9i − 0.257582i
\(344\) 0 0
\(345\) −8.34121e9 −0.588780
\(346\) 0 0
\(347\) − 2.69899e10i − 1.86158i −0.365549 0.930792i \(-0.619119\pi\)
0.365549 0.930792i \(-0.380881\pi\)
\(348\) 0 0
\(349\) −2.02677e10 −1.36617 −0.683083 0.730340i \(-0.739361\pi\)
−0.683083 + 0.730340i \(0.739361\pi\)
\(350\) 0 0
\(351\) 2.62206e9i 0.172748i
\(352\) 0 0
\(353\) 9.41747e9 0.606506 0.303253 0.952910i \(-0.401927\pi\)
0.303253 + 0.952910i \(0.401927\pi\)
\(354\) 0 0
\(355\) 8.99181e9i 0.566153i
\(356\) 0 0
\(357\) −1.70894e10 −1.05210
\(358\) 0 0
\(359\) 3.30369e9i 0.198894i 0.995043 + 0.0994469i \(0.0317073\pi\)
−0.995043 + 0.0994469i \(0.968293\pi\)
\(360\) 0 0
\(361\) 1.43908e10 0.847337
\(362\) 0 0
\(363\) − 4.48141e9i − 0.258100i
\(364\) 0 0
\(365\) 5.34874e9 0.301356
\(366\) 0 0
\(367\) − 1.14531e10i − 0.631335i −0.948870 0.315667i \(-0.897772\pi\)
0.948870 0.315667i \(-0.102228\pi\)
\(368\) 0 0
\(369\) 2.74407e10 1.48009
\(370\) 0 0
\(371\) 1.94867e10i 1.02859i
\(372\) 0 0
\(373\) −2.26449e10 −1.16986 −0.584932 0.811083i \(-0.698879\pi\)
−0.584932 + 0.811083i \(0.698879\pi\)
\(374\) 0 0
\(375\) 2.40575e9i 0.121654i
\(376\) 0 0
\(377\) 3.20547e10 1.58681
\(378\) 0 0
\(379\) − 5.61760e9i − 0.272266i −0.990691 0.136133i \(-0.956533\pi\)
0.990691 0.136133i \(-0.0434675\pi\)
\(380\) 0 0
\(381\) 3.24281e10 1.53894
\(382\) 0 0
\(383\) − 4.10535e9i − 0.190790i −0.995440 0.0953950i \(-0.969589\pi\)
0.995440 0.0953950i \(-0.0304114\pi\)
\(384\) 0 0
\(385\) 1.58046e10 0.719352
\(386\) 0 0
\(387\) − 1.59618e10i − 0.711602i
\(388\) 0 0
\(389\) 1.37663e9 0.0601199 0.0300599 0.999548i \(-0.490430\pi\)
0.0300599 + 0.999548i \(0.490430\pi\)
\(390\) 0 0
\(391\) 1.18670e10i 0.507732i
\(392\) 0 0
\(393\) −3.78234e10 −1.58559
\(394\) 0 0
\(395\) 1.49110e10i 0.612516i
\(396\) 0 0
\(397\) 3.04208e10 1.22464 0.612321 0.790610i \(-0.290236\pi\)
0.612321 + 0.790610i \(0.290236\pi\)
\(398\) 0 0
\(399\) 1.98626e10i 0.783689i
\(400\) 0 0
\(401\) −1.95473e10 −0.755977 −0.377989 0.925810i \(-0.623384\pi\)
−0.377989 + 0.925810i \(0.623384\pi\)
\(402\) 0 0
\(403\) 2.86785e10i 1.08727i
\(404\) 0 0
\(405\) −1.35664e10 −0.504247
\(406\) 0 0
\(407\) 4.74477e10i 1.72917i
\(408\) 0 0
\(409\) −4.37475e10 −1.56336 −0.781681 0.623678i \(-0.785638\pi\)
−0.781681 + 0.623678i \(0.785638\pi\)
\(410\) 0 0
\(411\) 2.24240e10i 0.785862i
\(412\) 0 0
\(413\) −2.36824e10 −0.814002
\(414\) 0 0
\(415\) − 1.74071e9i − 0.0586860i
\(416\) 0 0
\(417\) 2.76865e10 0.915637
\(418\) 0 0
\(419\) 1.93115e10i 0.626555i 0.949662 + 0.313277i \(0.101427\pi\)
−0.949662 + 0.313277i \(0.898573\pi\)
\(420\) 0 0
\(421\) 3.65545e10 1.16362 0.581812 0.813323i \(-0.302344\pi\)
0.581812 + 0.813323i \(0.302344\pi\)
\(422\) 0 0
\(423\) 7.08030e7i 0.00221152i
\(424\) 0 0
\(425\) 3.42266e9 0.104908
\(426\) 0 0
\(427\) 8.87121e9i 0.266853i
\(428\) 0 0
\(429\) 4.25359e10 1.25582
\(430\) 0 0
\(431\) 3.98669e10i 1.15532i 0.816276 + 0.577662i \(0.196035\pi\)
−0.816276 + 0.577662i \(0.803965\pi\)
\(432\) 0 0
\(433\) 3.21564e10 0.914779 0.457389 0.889266i \(-0.348785\pi\)
0.457389 + 0.889266i \(0.348785\pi\)
\(434\) 0 0
\(435\) 4.08285e10i 1.14027i
\(436\) 0 0
\(437\) 1.37927e10 0.378201
\(438\) 0 0
\(439\) 2.72016e10i 0.732379i 0.930540 + 0.366189i \(0.119338\pi\)
−0.930540 + 0.366189i \(0.880662\pi\)
\(440\) 0 0
\(441\) 3.77630e10 0.998418
\(442\) 0 0
\(443\) 1.32228e10i 0.343327i 0.985156 + 0.171663i \(0.0549142\pi\)
−0.985156 + 0.171663i \(0.945086\pi\)
\(444\) 0 0
\(445\) 1.07142e10 0.273224
\(446\) 0 0
\(447\) − 8.42834e10i − 2.11111i
\(448\) 0 0
\(449\) 2.82958e10 0.696203 0.348102 0.937457i \(-0.386826\pi\)
0.348102 + 0.937457i \(0.386826\pi\)
\(450\) 0 0
\(451\) 7.85831e10i 1.89943i
\(452\) 0 0
\(453\) 5.64718e10 1.34103
\(454\) 0 0
\(455\) 2.39261e10i 0.558248i
\(456\) 0 0
\(457\) 7.89688e10 1.81047 0.905234 0.424914i \(-0.139696\pi\)
0.905234 + 0.424914i \(0.139696\pi\)
\(458\) 0 0
\(459\) 4.75146e9i 0.107047i
\(460\) 0 0
\(461\) −2.63713e10 −0.583885 −0.291943 0.956436i \(-0.594302\pi\)
−0.291943 + 0.956436i \(0.594302\pi\)
\(462\) 0 0
\(463\) 2.74281e10i 0.596858i 0.954432 + 0.298429i \(0.0964627\pi\)
−0.954432 + 0.298429i \(0.903537\pi\)
\(464\) 0 0
\(465\) −3.65282e10 −0.781297
\(466\) 0 0
\(467\) − 8.24023e10i − 1.73249i −0.499616 0.866247i \(-0.666525\pi\)
0.499616 0.866247i \(-0.333475\pi\)
\(468\) 0 0
\(469\) 1.36925e10 0.283004
\(470\) 0 0
\(471\) − 1.28868e11i − 2.61855i
\(472\) 0 0
\(473\) 4.57104e10 0.913209
\(474\) 0 0
\(475\) − 3.97805e9i − 0.0781441i
\(476\) 0 0
\(477\) −3.06914e10 −0.592847
\(478\) 0 0
\(479\) 1.28142e10i 0.243415i 0.992566 + 0.121708i \(0.0388370\pi\)
−0.992566 + 0.121708i \(0.961163\pi\)
\(480\) 0 0
\(481\) −7.18296e10 −1.34191
\(482\) 0 0
\(483\) − 1.05663e11i − 1.94149i
\(484\) 0 0
\(485\) 2.20039e10 0.397680
\(486\) 0 0
\(487\) 2.27188e10i 0.403895i 0.979396 + 0.201948i \(0.0647271\pi\)
−0.979396 + 0.201948i \(0.935273\pi\)
\(488\) 0 0
\(489\) 9.68695e10 1.69415
\(490\) 0 0
\(491\) − 8.70411e10i − 1.49761i −0.662791 0.748805i \(-0.730628\pi\)
0.662791 0.748805i \(-0.269372\pi\)
\(492\) 0 0
\(493\) 5.80866e10 0.983305
\(494\) 0 0
\(495\) 2.48921e10i 0.414612i
\(496\) 0 0
\(497\) −1.13904e11 −1.86688
\(498\) 0 0
\(499\) − 1.34972e10i − 0.217691i −0.994059 0.108846i \(-0.965285\pi\)
0.994059 0.108846i \(-0.0347154\pi\)
\(500\) 0 0
\(501\) −5.10441e10 −0.810205
\(502\) 0 0
\(503\) − 4.13249e10i − 0.645565i −0.946473 0.322782i \(-0.895382\pi\)
0.946473 0.322782i \(-0.104618\pi\)
\(504\) 0 0
\(505\) 3.25487e9 0.0500459
\(506\) 0 0
\(507\) − 2.54759e10i − 0.385564i
\(508\) 0 0
\(509\) 3.37390e9 0.0502645 0.0251322 0.999684i \(-0.491999\pi\)
0.0251322 + 0.999684i \(0.491999\pi\)
\(510\) 0 0
\(511\) 6.77557e10i 0.993715i
\(512\) 0 0
\(513\) 5.52248e9 0.0797379
\(514\) 0 0
\(515\) − 1.92461e10i − 0.273598i
\(516\) 0 0
\(517\) −2.02761e8 −0.00283807
\(518\) 0 0
\(519\) − 5.19653e10i − 0.716216i
\(520\) 0 0
\(521\) 1.24497e11 1.68969 0.844847 0.535007i \(-0.179691\pi\)
0.844847 + 0.535007i \(0.179691\pi\)
\(522\) 0 0
\(523\) − 4.47960e10i − 0.598733i −0.954138 0.299366i \(-0.903225\pi\)
0.954138 0.299366i \(-0.0967753\pi\)
\(524\) 0 0
\(525\) −3.04751e10 −0.401151
\(526\) 0 0
\(527\) 5.19686e10i 0.673749i
\(528\) 0 0
\(529\) 4.93792e9 0.0630553
\(530\) 0 0
\(531\) − 3.72995e10i − 0.469165i
\(532\) 0 0
\(533\) −1.18964e11 −1.47404
\(534\) 0 0
\(535\) − 2.15135e10i − 0.262601i
\(536\) 0 0
\(537\) −9.15263e10 −1.10065
\(538\) 0 0
\(539\) 1.08144e11i 1.28129i
\(540\) 0 0
\(541\) 8.68526e10 1.01390 0.506948 0.861977i \(-0.330774\pi\)
0.506948 + 0.861977i \(0.330774\pi\)
\(542\) 0 0
\(543\) − 6.82787e10i − 0.785391i
\(544\) 0 0
\(545\) 1.20044e9 0.0136068
\(546\) 0 0
\(547\) 1.65768e11i 1.85162i 0.377993 + 0.925808i \(0.376614\pi\)
−0.377993 + 0.925808i \(0.623386\pi\)
\(548\) 0 0
\(549\) −1.39721e10 −0.153805
\(550\) 0 0
\(551\) − 6.75124e10i − 0.732448i
\(552\) 0 0
\(553\) −1.88886e11 −2.01976
\(554\) 0 0
\(555\) − 9.14903e10i − 0.964280i
\(556\) 0 0
\(557\) 9.73769e10 1.01166 0.505831 0.862633i \(-0.331186\pi\)
0.505831 + 0.862633i \(0.331186\pi\)
\(558\) 0 0
\(559\) 6.91995e10i 0.708689i
\(560\) 0 0
\(561\) 7.70796e10 0.778195
\(562\) 0 0
\(563\) 1.96004e9i 0.0195088i 0.999952 + 0.00975440i \(0.00310497\pi\)
−0.999952 + 0.00975440i \(0.996895\pi\)
\(564\) 0 0
\(565\) −6.54913e10 −0.642673
\(566\) 0 0
\(567\) − 1.71853e11i − 1.66274i
\(568\) 0 0
\(569\) 7.88598e10 0.752327 0.376164 0.926553i \(-0.377243\pi\)
0.376164 + 0.926553i \(0.377243\pi\)
\(570\) 0 0
\(571\) − 5.71331e10i − 0.537457i −0.963216 0.268728i \(-0.913397\pi\)
0.963216 0.268728i \(-0.0866034\pi\)
\(572\) 0 0
\(573\) 4.67145e9 0.0433345
\(574\) 0 0
\(575\) 2.11621e10i 0.193592i
\(576\) 0 0
\(577\) 1.51459e11 1.36644 0.683221 0.730212i \(-0.260579\pi\)
0.683221 + 0.730212i \(0.260579\pi\)
\(578\) 0 0
\(579\) 4.63984e10i 0.412847i
\(580\) 0 0
\(581\) 2.20506e10 0.193516
\(582\) 0 0
\(583\) − 8.78922e10i − 0.760810i
\(584\) 0 0
\(585\) −3.76834e10 −0.321756
\(586\) 0 0
\(587\) 1.33645e11i 1.12564i 0.826580 + 0.562819i \(0.190283\pi\)
−0.826580 + 0.562819i \(0.809717\pi\)
\(588\) 0 0
\(589\) 6.04015e10 0.501865
\(590\) 0 0
\(591\) 2.13670e11i 1.75143i
\(592\) 0 0
\(593\) −1.58419e11 −1.28112 −0.640558 0.767910i \(-0.721297\pi\)
−0.640558 + 0.767910i \(0.721297\pi\)
\(594\) 0 0
\(595\) 4.33568e10i 0.345931i
\(596\) 0 0
\(597\) −2.32741e10 −0.183221
\(598\) 0 0
\(599\) − 4.31245e10i − 0.334978i −0.985874 0.167489i \(-0.946434\pi\)
0.985874 0.167489i \(-0.0535659\pi\)
\(600\) 0 0
\(601\) 4.15092e10 0.318160 0.159080 0.987266i \(-0.449147\pi\)
0.159080 + 0.987266i \(0.449147\pi\)
\(602\) 0 0
\(603\) 2.15656e10i 0.163114i
\(604\) 0 0
\(605\) −1.13696e10 −0.0848637
\(606\) 0 0
\(607\) 2.83174e10i 0.208592i 0.994546 + 0.104296i \(0.0332590\pi\)
−0.994546 + 0.104296i \(0.966741\pi\)
\(608\) 0 0
\(609\) −5.17199e11 −3.76000
\(610\) 0 0
\(611\) − 3.06954e8i − 0.00220246i
\(612\) 0 0
\(613\) −2.40024e11 −1.69986 −0.849928 0.526899i \(-0.823355\pi\)
−0.849928 + 0.526899i \(0.823355\pi\)
\(614\) 0 0
\(615\) − 1.51527e11i − 1.05923i
\(616\) 0 0
\(617\) −1.16795e10 −0.0805904 −0.0402952 0.999188i \(-0.512830\pi\)
−0.0402952 + 0.999188i \(0.512830\pi\)
\(618\) 0 0
\(619\) − 2.19401e11i − 1.49443i −0.664583 0.747215i \(-0.731391\pi\)
0.664583 0.747215i \(-0.268609\pi\)
\(620\) 0 0
\(621\) −2.93780e10 −0.197540
\(622\) 0 0
\(623\) 1.35723e11i 0.900948i
\(624\) 0 0
\(625\) 6.10352e9 0.0400000
\(626\) 0 0
\(627\) − 8.95874e10i − 0.579665i
\(628\) 0 0
\(629\) −1.30163e11 −0.831544
\(630\) 0 0
\(631\) 2.35335e10i 0.148446i 0.997242 + 0.0742230i \(0.0236477\pi\)
−0.997242 + 0.0742230i \(0.976352\pi\)
\(632\) 0 0
\(633\) 2.21890e11 1.38205
\(634\) 0 0
\(635\) − 8.22718e10i − 0.506006i
\(636\) 0 0
\(637\) −1.63715e11 −0.994332
\(638\) 0 0
\(639\) − 1.79398e11i − 1.07601i
\(640\) 0 0
\(641\) −8.47231e10 −0.501845 −0.250923 0.968007i \(-0.580734\pi\)
−0.250923 + 0.968007i \(0.580734\pi\)
\(642\) 0 0
\(643\) 2.37102e11i 1.38705i 0.720435 + 0.693523i \(0.243942\pi\)
−0.720435 + 0.693523i \(0.756058\pi\)
\(644\) 0 0
\(645\) −8.81404e10 −0.509256
\(646\) 0 0
\(647\) 2.88712e11i 1.64758i 0.566892 + 0.823792i \(0.308146\pi\)
−0.566892 + 0.823792i \(0.691854\pi\)
\(648\) 0 0
\(649\) 1.06816e11 0.602086
\(650\) 0 0
\(651\) − 4.62724e11i − 2.57631i
\(652\) 0 0
\(653\) −7.01205e10 −0.385649 −0.192824 0.981233i \(-0.561765\pi\)
−0.192824 + 0.981233i \(0.561765\pi\)
\(654\) 0 0
\(655\) 9.59600e10i 0.521345i
\(656\) 0 0
\(657\) −1.06714e11 −0.572746
\(658\) 0 0
\(659\) 1.30280e11i 0.690774i 0.938460 + 0.345387i \(0.112252\pi\)
−0.938460 + 0.345387i \(0.887748\pi\)
\(660\) 0 0
\(661\) 9.13098e10 0.478312 0.239156 0.970981i \(-0.423129\pi\)
0.239156 + 0.970981i \(0.423129\pi\)
\(662\) 0 0
\(663\) 1.16688e11i 0.603912i
\(664\) 0 0
\(665\) 5.03923e10 0.257678
\(666\) 0 0
\(667\) 3.59146e11i 1.81454i
\(668\) 0 0
\(669\) 9.99097e10 0.498773
\(670\) 0 0
\(671\) − 4.00124e10i − 0.197381i
\(672\) 0 0
\(673\) −2.19105e11 −1.06805 −0.534026 0.845468i \(-0.679321\pi\)
−0.534026 + 0.845468i \(0.679321\pi\)
\(674\) 0 0
\(675\) 8.47313e9i 0.0408158i
\(676\) 0 0
\(677\) 8.12354e10 0.386715 0.193357 0.981128i \(-0.438062\pi\)
0.193357 + 0.981128i \(0.438062\pi\)
\(678\) 0 0
\(679\) 2.78737e11i 1.31134i
\(680\) 0 0
\(681\) 1.02598e10 0.0477037
\(682\) 0 0
\(683\) 2.91761e11i 1.34074i 0.742028 + 0.670369i \(0.233864\pi\)
−0.742028 + 0.670369i \(0.766136\pi\)
\(684\) 0 0
\(685\) 5.68909e10 0.258393
\(686\) 0 0
\(687\) 5.70507e10i 0.256115i
\(688\) 0 0
\(689\) 1.33057e11 0.590421
\(690\) 0 0
\(691\) 1.35594e11i 0.594743i 0.954762 + 0.297371i \(0.0961100\pi\)
−0.954762 + 0.297371i \(0.903890\pi\)
\(692\) 0 0
\(693\) −3.15323e11 −1.36717
\(694\) 0 0
\(695\) − 7.02420e10i − 0.301063i
\(696\) 0 0
\(697\) −2.15577e11 −0.913420
\(698\) 0 0
\(699\) − 1.32664e11i − 0.555707i
\(700\) 0 0
\(701\) −1.48441e11 −0.614725 −0.307363 0.951592i \(-0.599446\pi\)
−0.307363 + 0.951592i \(0.599446\pi\)
\(702\) 0 0
\(703\) 1.51285e11i 0.619404i
\(704\) 0 0
\(705\) 3.90972e8 0.00158267
\(706\) 0 0
\(707\) 4.12314e10i 0.165025i
\(708\) 0 0
\(709\) −4.79726e11 −1.89849 −0.949245 0.314536i \(-0.898151\pi\)
−0.949245 + 0.314536i \(0.898151\pi\)
\(710\) 0 0
\(711\) − 2.97493e11i − 1.16412i
\(712\) 0 0
\(713\) −3.21318e11 −1.24330
\(714\) 0 0
\(715\) − 1.07916e11i − 0.412915i
\(716\) 0 0
\(717\) 2.33659e11 0.884110
\(718\) 0 0
\(719\) − 4.02314e11i − 1.50539i −0.658368 0.752696i \(-0.728753\pi\)
0.658368 0.752696i \(-0.271247\pi\)
\(720\) 0 0
\(721\) 2.43801e11 0.902184
\(722\) 0 0
\(723\) − 7.55163e10i − 0.276368i
\(724\) 0 0
\(725\) 1.03584e11 0.374922
\(726\) 0 0
\(727\) 3.49293e11i 1.25041i 0.780461 + 0.625204i \(0.214984\pi\)
−0.780461 + 0.625204i \(0.785016\pi\)
\(728\) 0 0
\(729\) 1.92272e11 0.680777
\(730\) 0 0
\(731\) 1.25397e11i 0.439155i
\(732\) 0 0
\(733\) 1.75651e11 0.608464 0.304232 0.952598i \(-0.401600\pi\)
0.304232 + 0.952598i \(0.401600\pi\)
\(734\) 0 0
\(735\) − 2.08526e11i − 0.714516i
\(736\) 0 0
\(737\) −6.17583e10 −0.209327
\(738\) 0 0
\(739\) 1.85701e11i 0.622640i 0.950305 + 0.311320i \(0.100771\pi\)
−0.950305 + 0.311320i \(0.899229\pi\)
\(740\) 0 0
\(741\) 1.35624e11 0.449844
\(742\) 0 0
\(743\) 2.85901e11i 0.938126i 0.883165 + 0.469063i \(0.155408\pi\)
−0.883165 + 0.469063i \(0.844592\pi\)
\(744\) 0 0
\(745\) −2.13831e11 −0.694138
\(746\) 0 0
\(747\) 3.47295e10i 0.111536i
\(748\) 0 0
\(749\) 2.72524e11 0.865919
\(750\) 0 0
\(751\) − 6.18679e11i − 1.94494i −0.233031 0.972469i \(-0.574864\pi\)
0.233031 0.972469i \(-0.425136\pi\)
\(752\) 0 0
\(753\) −4.89399e11 −1.52224
\(754\) 0 0
\(755\) − 1.43272e11i − 0.440934i
\(756\) 0 0
\(757\) −9.34034e10 −0.284433 −0.142216 0.989836i \(-0.545423\pi\)
−0.142216 + 0.989836i \(0.545423\pi\)
\(758\) 0 0
\(759\) 4.76579e11i 1.43604i
\(760\) 0 0
\(761\) −3.21388e11 −0.958276 −0.479138 0.877740i \(-0.659051\pi\)
−0.479138 + 0.877740i \(0.659051\pi\)
\(762\) 0 0
\(763\) 1.52067e10i 0.0448681i
\(764\) 0 0
\(765\) −6.82865e10 −0.199384
\(766\) 0 0
\(767\) 1.61706e11i 0.467245i
\(768\) 0 0
\(769\) 2.44957e10 0.0700461 0.0350231 0.999387i \(-0.488850\pi\)
0.0350231 + 0.999387i \(0.488850\pi\)
\(770\) 0 0
\(771\) 1.88591e11i 0.533709i
\(772\) 0 0
\(773\) −1.61194e11 −0.451472 −0.225736 0.974189i \(-0.572479\pi\)
−0.225736 + 0.974189i \(0.572479\pi\)
\(774\) 0 0
\(775\) 9.26739e10i 0.256892i
\(776\) 0 0
\(777\) 1.15896e12 3.17969
\(778\) 0 0
\(779\) 2.50558e11i 0.680392i
\(780\) 0 0
\(781\) 5.13751e11 1.38086
\(782\) 0 0
\(783\) 1.43799e11i 0.382569i
\(784\) 0 0
\(785\) −3.26945e11 −0.860985
\(786\) 0 0
\(787\) − 4.76190e11i − 1.24131i −0.784083 0.620657i \(-0.786866\pi\)
0.784083 0.620657i \(-0.213134\pi\)
\(788\) 0 0
\(789\) −2.76084e11 −0.712416
\(790\) 0 0
\(791\) − 8.29617e11i − 2.11920i
\(792\) 0 0
\(793\) 6.05735e10 0.153176
\(794\) 0 0
\(795\) 1.69477e11i 0.424270i
\(796\) 0 0
\(797\) 1.59422e11 0.395107 0.197553 0.980292i \(-0.436700\pi\)
0.197553 + 0.980292i \(0.436700\pi\)
\(798\) 0 0
\(799\) − 5.56235e8i − 0.00136481i
\(800\) 0 0
\(801\) −2.13762e11 −0.519278
\(802\) 0 0
\(803\) − 3.05603e11i − 0.735013i
\(804\) 0 0
\(805\) −2.68072e11 −0.638364
\(806\) 0 0
\(807\) − 3.99751e10i − 0.0942530i
\(808\) 0 0
\(809\) −4.86253e11 −1.13519 −0.567594 0.823308i \(-0.692126\pi\)
−0.567594 + 0.823308i \(0.692126\pi\)
\(810\) 0 0
\(811\) − 3.39760e11i − 0.785396i −0.919667 0.392698i \(-0.871542\pi\)
0.919667 0.392698i \(-0.128458\pi\)
\(812\) 0 0
\(813\) −1.16408e12 −2.66454
\(814\) 0 0
\(815\) − 2.45763e11i − 0.557039i
\(816\) 0 0
\(817\) 1.45745e11 0.327120
\(818\) 0 0
\(819\) − 4.77358e11i − 1.06098i
\(820\) 0 0
\(821\) −6.74268e11 −1.48409 −0.742044 0.670351i \(-0.766144\pi\)
−0.742044 + 0.670351i \(0.766144\pi\)
\(822\) 0 0
\(823\) − 3.11660e11i − 0.679332i −0.940546 0.339666i \(-0.889686\pi\)
0.940546 0.339666i \(-0.110314\pi\)
\(824\) 0 0
\(825\) 1.37454e11 0.296716
\(826\) 0 0
\(827\) 3.10210e11i 0.663183i 0.943423 + 0.331592i \(0.107586\pi\)
−0.943423 + 0.331592i \(0.892414\pi\)
\(828\) 0 0
\(829\) 3.09076e11 0.654406 0.327203 0.944954i \(-0.393894\pi\)
0.327203 + 0.944954i \(0.393894\pi\)
\(830\) 0 0
\(831\) 1.50082e11i 0.314720i
\(832\) 0 0
\(833\) −2.96670e11 −0.616160
\(834\) 0 0
\(835\) 1.29502e11i 0.266397i
\(836\) 0 0
\(837\) −1.28653e11 −0.262132
\(838\) 0 0
\(839\) 5.22492e11i 1.05446i 0.849722 + 0.527232i \(0.176770\pi\)
−0.849722 + 0.527232i \(0.823230\pi\)
\(840\) 0 0
\(841\) 1.25770e12 2.51416
\(842\) 0 0
\(843\) − 3.32163e11i − 0.657721i
\(844\) 0 0
\(845\) −6.46336e10 −0.126774
\(846\) 0 0
\(847\) − 1.44025e11i − 0.279836i
\(848\) 0 0
\(849\) −1.52278e11 −0.293094
\(850\) 0 0
\(851\) − 8.04790e11i − 1.53449i
\(852\) 0 0
\(853\) 5.25270e11 0.992171 0.496086 0.868274i \(-0.334770\pi\)
0.496086 + 0.868274i \(0.334770\pi\)
\(854\) 0 0
\(855\) 7.93674e10i 0.148518i
\(856\) 0 0
\(857\) 3.18270e11 0.590028 0.295014 0.955493i \(-0.404676\pi\)
0.295014 + 0.955493i \(0.404676\pi\)
\(858\) 0 0
\(859\) − 8.61467e11i − 1.58222i −0.611676 0.791108i \(-0.709504\pi\)
0.611676 0.791108i \(-0.290496\pi\)
\(860\) 0 0
\(861\) 1.91948e12 3.49277
\(862\) 0 0
\(863\) − 1.40931e11i − 0.254075i −0.991898 0.127038i \(-0.959453\pi\)
0.991898 0.127038i \(-0.0405469\pi\)
\(864\) 0 0
\(865\) −1.31839e11 −0.235493
\(866\) 0 0
\(867\) − 5.57071e11i − 0.985903i
\(868\) 0 0
\(869\) 8.51945e11 1.49394
\(870\) 0 0
\(871\) − 9.34940e10i − 0.162447i
\(872\) 0 0
\(873\) −4.39008e11 −0.755814
\(874\) 0 0
\(875\) 7.73168e10i 0.131899i
\(876\) 0 0
\(877\) 4.00362e11 0.676790 0.338395 0.941004i \(-0.390116\pi\)
0.338395 + 0.941004i \(0.390116\pi\)
\(878\) 0 0
\(879\) − 6.46426e11i − 1.08284i
\(880\) 0 0
\(881\) 4.94890e11 0.821496 0.410748 0.911749i \(-0.365268\pi\)
0.410748 + 0.911749i \(0.365268\pi\)
\(882\) 0 0
\(883\) − 7.88039e11i − 1.29630i −0.761513 0.648149i \(-0.775543\pi\)
0.761513 0.648149i \(-0.224457\pi\)
\(884\) 0 0
\(885\) −2.05967e11 −0.335757
\(886\) 0 0
\(887\) − 2.78785e10i − 0.0450375i −0.999746 0.0225188i \(-0.992831\pi\)
0.999746 0.0225188i \(-0.00716855\pi\)
\(888\) 0 0
\(889\) 1.04218e12 1.66854
\(890\) 0 0
\(891\) 7.75120e11i 1.22987i
\(892\) 0 0
\(893\) −6.46496e8 −0.00101662
\(894\) 0 0
\(895\) 2.32207e11i 0.361895i
\(896\) 0 0
\(897\) −7.21478e11 −1.11443
\(898\) 0 0
\(899\) 1.57279e12i 2.40786i
\(900\) 0 0
\(901\) 2.41114e11 0.365868
\(902\) 0 0
\(903\) − 1.11653e12i − 1.67926i
\(904\) 0 0
\(905\) −1.73226e11 −0.258238
\(906\) 0 0
\(907\) 5.94476e11i 0.878426i 0.898383 + 0.439213i \(0.144743\pi\)
−0.898383 + 0.439213i \(0.855257\pi\)
\(908\) 0 0
\(909\) −6.49390e10 −0.0951152
\(910\) 0 0
\(911\) 5.11180e11i 0.742165i 0.928600 + 0.371082i \(0.121013\pi\)
−0.928600 + 0.371082i \(0.878987\pi\)
\(912\) 0 0
\(913\) −9.94564e10 −0.143136
\(914\) 0 0
\(915\) 7.71534e10i 0.110070i
\(916\) 0 0
\(917\) −1.21558e12 −1.71912
\(918\) 0 0
\(919\) 7.89745e11i 1.10720i 0.832784 + 0.553598i \(0.186746\pi\)
−0.832784 + 0.553598i \(0.813254\pi\)
\(920\) 0 0
\(921\) 6.38313e11 0.887146
\(922\) 0 0
\(923\) 7.77751e11i 1.07160i
\(924\) 0 0
\(925\) −2.32116e11 −0.317057
\(926\) 0 0
\(927\) 3.83985e11i 0.519990i
\(928\) 0 0
\(929\) 1.28241e12 1.72172 0.860862 0.508839i \(-0.169925\pi\)
0.860862 + 0.508839i \(0.169925\pi\)
\(930\) 0 0
\(931\) 3.44811e11i 0.458968i
\(932\) 0 0
\(933\) −9.22414e11 −1.21730
\(934\) 0 0
\(935\) − 1.95555e11i − 0.255872i
\(936\) 0 0
\(937\) −4.16365e11 −0.540152 −0.270076 0.962839i \(-0.587049\pi\)
−0.270076 + 0.962839i \(0.587049\pi\)
\(938\) 0 0
\(939\) 1.35258e12i 1.73980i
\(940\) 0 0
\(941\) 1.33006e12 1.69634 0.848171 0.529723i \(-0.177704\pi\)
0.848171 + 0.529723i \(0.177704\pi\)
\(942\) 0 0
\(943\) − 1.33290e12i − 1.68558i
\(944\) 0 0
\(945\) −1.07334e11 −0.134589
\(946\) 0 0
\(947\) − 1.36285e11i − 0.169453i −0.996404 0.0847265i \(-0.972998\pi\)
0.996404 0.0847265i \(-0.0270017\pi\)
\(948\) 0 0
\(949\) 4.62642e11 0.570401
\(950\) 0 0
\(951\) 1.52524e12i 1.86473i
\(952\) 0 0
\(953\) 1.22326e12 1.48302 0.741509 0.670943i \(-0.234111\pi\)
0.741509 + 0.670943i \(0.234111\pi\)
\(954\) 0 0
\(955\) − 1.18517e10i − 0.0142485i
\(956\) 0 0
\(957\) 2.33275e12 2.78113
\(958\) 0 0
\(959\) 7.20671e11i 0.852045i
\(960\) 0 0
\(961\) −5.54240e11 −0.649837
\(962\) 0 0
\(963\) 4.29222e11i 0.499088i
\(964\) 0 0
\(965\) 1.17715e11 0.135745
\(966\) 0 0
\(967\) − 7.99217e10i − 0.0914027i −0.998955 0.0457014i \(-0.985448\pi\)
0.998955 0.0457014i \(-0.0145523\pi\)
\(968\) 0 0
\(969\) 2.45765e11 0.278756
\(970\) 0 0
\(971\) 3.43166e11i 0.386036i 0.981195 + 0.193018i \(0.0618276\pi\)
−0.981195 + 0.193018i \(0.938172\pi\)
\(972\) 0 0
\(973\) 8.89796e11 0.992748
\(974\) 0 0
\(975\) 2.08087e11i 0.230264i
\(976\) 0 0
\(977\) −2.96831e11 −0.325785 −0.162893 0.986644i \(-0.552082\pi\)
−0.162893 + 0.986644i \(0.552082\pi\)
\(978\) 0 0
\(979\) − 6.12158e11i − 0.666397i
\(980\) 0 0
\(981\) −2.39505e10 −0.0258605
\(982\) 0 0
\(983\) 9.12247e11i 0.977009i 0.872561 + 0.488504i \(0.162457\pi\)
−0.872561 + 0.488504i \(0.837543\pi\)
\(984\) 0 0
\(985\) 5.42091e11 0.575873
\(986\) 0 0
\(987\) 4.95267e9i 0.00521880i
\(988\) 0 0
\(989\) −7.75323e11 −0.810396
\(990\) 0 0
\(991\) 9.63646e11i 0.999132i 0.866276 + 0.499566i \(0.166507\pi\)
−0.866276 + 0.499566i \(0.833493\pi\)
\(992\) 0 0
\(993\) −8.50231e11 −0.874460
\(994\) 0 0
\(995\) 5.90475e10i 0.0602434i
\(996\) 0 0
\(997\) 1.13678e12 1.15052 0.575261 0.817970i \(-0.304900\pi\)
0.575261 + 0.817970i \(0.304900\pi\)
\(998\) 0 0
\(999\) − 3.22232e11i − 0.323524i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 320.9.b.d.191.14 16
4.3 odd 2 inner 320.9.b.d.191.3 16
8.3 odd 2 20.9.b.a.11.5 16
8.5 even 2 20.9.b.a.11.6 yes 16
24.5 odd 2 180.9.c.a.91.11 16
24.11 even 2 180.9.c.a.91.12 16
40.3 even 4 100.9.d.c.99.6 32
40.13 odd 4 100.9.d.c.99.28 32
40.19 odd 2 100.9.b.d.51.12 16
40.27 even 4 100.9.d.c.99.27 32
40.29 even 2 100.9.b.d.51.11 16
40.37 odd 4 100.9.d.c.99.5 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.9.b.a.11.5 16 8.3 odd 2
20.9.b.a.11.6 yes 16 8.5 even 2
100.9.b.d.51.11 16 40.29 even 2
100.9.b.d.51.12 16 40.19 odd 2
100.9.d.c.99.5 32 40.37 odd 4
100.9.d.c.99.6 32 40.3 even 4
100.9.d.c.99.27 32 40.27 even 4
100.9.d.c.99.28 32 40.13 odd 4
180.9.c.a.91.11 16 24.5 odd 2
180.9.c.a.91.12 16 24.11 even 2
320.9.b.d.191.3 16 4.3 odd 2 inner
320.9.b.d.191.14 16 1.1 even 1 trivial