Properties

Label 180.9.c
Level $180$
Weight $9$
Character orbit 180.c
Rep. character $\chi_{180}(91,\cdot)$
Character field $\Q$
Dimension $80$
Newform subspaces $3$
Sturm bound $324$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 180.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 4 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(324\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(180, [\chi])\).

Total New Old
Modular forms 296 80 216
Cusp forms 280 80 200
Eisenstein series 16 0 16

Trace form

\( 80 q + 6 q^{2} + 424 q^{4} + 5724 q^{8} - 8750 q^{10} - 51392 q^{13} + 33132 q^{14} - 76220 q^{16} - 27552 q^{17} + 172500 q^{20} - 836992 q^{22} + 6250000 q^{25} + 462480 q^{26} - 374072 q^{28} + 1499808 q^{29}+ \cdots + 667407294 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(180, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
180.9.c.a 180.c 4.b $16$ $73.328$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 20.9.b.a \(-6\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}+(-3+\beta _{3})q^{4}+(1-2\beta _{1}+\cdots)q^{5}+\cdots\)
180.9.c.b 180.c 4.b $32$ $73.328$ None 180.9.c.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$
180.9.c.c 180.c 4.b $32$ $73.328$ None 60.9.c.a \(12\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{9}^{\mathrm{old}}(180, [\chi])\) into lower level spaces

\( S_{9}^{\mathrm{old}}(180, [\chi]) \simeq \) \(S_{9}^{\mathrm{new}}(4, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 2}\)