Defining parameters
Level: | \( N \) | \(=\) | \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 9 \) |
Character orbit: | \([\chi]\) | \(=\) | 180.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 4 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(324\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{9}(180, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 296 | 80 | 216 |
Cusp forms | 280 | 80 | 200 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{9}^{\mathrm{new}}(180, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
180.9.c.a | $16$ | $73.328$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(-6\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{1}q^{2}+(-3+\beta _{3})q^{4}+(1-2\beta _{1}+\cdots)q^{5}+\cdots\) |
180.9.c.b | $32$ | $73.328$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
180.9.c.c | $32$ | $73.328$ | None | \(12\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{9}^{\mathrm{old}}(180, [\chi])\) into lower level spaces
\( S_{9}^{\mathrm{old}}(180, [\chi]) \simeq \) \(S_{9}^{\mathrm{new}}(4, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 2}\)