Label |
Level |
Weight |
Char |
Prim |
Char order |
Dim |
Rel. Dim |
$A$ |
Field |
Image |
CM |
RM |
Self-dual |
Twist minimal |
Largest |
Maximal |
Minimal twist |
Inner twists |
Rank* |
Traces |
Fricke sign |
Coefficient ring index |
Sato-Tate |
$q$-expansion |
$a_{2}$ |
$a_{3}$ |
$a_{5}$ |
$a_{7}$ |
180.1.f.a |
$180$ |
$1$ |
180.f |
20.d |
$2$ |
$2$ |
$2$ |
$0.090$ |
\(\Q(\sqrt{-1}) \) |
$D_{2}$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-15}) \) |
\(\Q(\sqrt{15}) \) |
|
✓ |
✓ |
✓ |
180.1.f.a |
$8$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(0\) |
|
$1$ |
|
\(q-iq^{2}-q^{4}-iq^{5}+iq^{8}-q^{10}+\cdots\) |
180.1.m.a |
$180$ |
$1$ |
180.m |
60.l |
$4$ |
$4$ |
$2$ |
$0.090$ |
\(\Q(\zeta_{8})\) |
$D_{4}$ |
\(\Q(\sqrt{-1}) \) |
None |
|
✓ |
✓ |
✓ |
180.1.m.a |
$8$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(0\) |
|
$1$ |
|
\(q-\zeta_{8}^{3}q^{2}-\zeta_{8}^{2}q^{4}+\zeta_{8}^{3}q^{5}-\zeta_{8}q^{8}+\cdots\) |
180.1.p.a |
$180$ |
$1$ |
180.p |
180.p |
$6$ |
$2$ |
$1$ |
$0.090$ |
\(\Q(\sqrt{-3}) \) |
$D_{3}$ |
\(\Q(\sqrt{-5}) \) |
None |
|
✓ |
|
|
180.1.p.a |
$4$ |
$0$ |
\(-1\) |
\(-1\) |
\(-1\) |
\(1\) |
|
$1$ |
|
\(q+\zeta_{6}^{2}q^{2}-\zeta_{6}q^{3}-\zeta_{6}q^{4}-\zeta_{6}q^{5}+\cdots\) |
180.1.p.b |
$180$ |
$1$ |
180.p |
180.p |
$6$ |
$2$ |
$1$ |
$0.090$ |
\(\Q(\sqrt{-3}) \) |
$D_{3}$ |
\(\Q(\sqrt{-5}) \) |
None |
|
✓ |
|
|
180.1.p.a |
$4$ |
$0$ |
\(1\) |
\(1\) |
\(-1\) |
\(-1\) |
|
$1$ |
|
\(q-\zeta_{6}^{2}q^{2}+\zeta_{6}q^{3}-\zeta_{6}q^{4}-\zeta_{6}q^{5}+\cdots\) |
180.2.a.a |
$180$ |
$2$ |
180.a |
1.a |
$1$ |
$1$ |
$1$ |
$1.437$ |
\(\Q\) |
$_{}$ |
None |
None |
✓ |
|
✓ |
✓ |
20.2.a.a |
$1$ |
$0$ |
\(0\) |
\(0\) |
\(1\) |
\(2\) |
$-$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q+q^{5}+2q^{7}+2q^{13}+6q^{17}-4q^{19}+\cdots\) |
180.2.d.a |
$180$ |
$2$ |
180.d |
5.b |
$2$ |
$2$ |
$2$ |
$1.437$ |
\(\Q(\sqrt{-1}) \) |
$_{}$ |
None |
None |
|
|
✓ |
✓ |
60.2.d.a |
$2$ |
$0$ |
\(0\) |
\(0\) |
\(-2\) |
\(0\) |
|
$2$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q+(-1+i)q^{5}+2iq^{7}+4q^{11}-2iq^{17}+\cdots\) |
180.2.e.a |
$180$ |
$2$ |
180.e |
12.b |
$2$ |
$8$ |
$8$ |
$1.437$ |
8.0.18939904.2 |
$_{}$ |
None |
None |
|
✓ |
✓ |
✓ |
180.2.e.a |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(0\) |
|
$2^{2}$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q+(\beta _{2}+\beta _{6})q^{2}+(\beta _{4}-\beta _{5}+\beta _{7})q^{4}+\cdots\) |
180.2.h.a |
$180$ |
$2$ |
180.h |
60.h |
$2$ |
$4$ |
$4$ |
$1.437$ |
\(\Q(\zeta_{8})\) |
$_{}$ |
\(\Q(\sqrt{-1}) \) |
None |
|
✓ |
|
|
180.2.h.a |
$8$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(0\) |
|
$3^{2}$ |
$\mathrm{U}(1)[D_{2}]$ |
\(q+\zeta_{8}^{3}q^{2}+2q^{4}-\zeta_{8}^{2}q^{5}+2\zeta_{8}^{3}q^{8}+\cdots\) |
180.2.h.b |
$180$ |
$2$ |
180.h |
60.h |
$2$ |
$8$ |
$8$ |
$1.437$ |
8.0.3317760000.1 |
$_{}$ |
None |
None |
|
✓ |
✓ |
|
180.2.h.b |
$8$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(0\) |
|
$2^{2}$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q-\beta _{4}q^{2}+\beta _{3}q^{4}+(-\beta _{2}-\beta _{4}+\beta _{5}+\cdots)q^{5}+\cdots\) |
180.2.i.a |
$180$ |
$2$ |
180.i |
9.c |
$3$ |
$2$ |
$1$ |
$1.437$ |
\(\Q(\sqrt{-3}) \) |
$_{}$ |
None |
None |
|
✓ |
|
|
180.2.i.a |
$2$ |
$0$ |
\(0\) |
\(3\) |
\(-1\) |
\(1\) |
|
$1$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q+(2-\zeta_{6})q^{3}-\zeta_{6}q^{5}+(1-\zeta_{6})q^{7}+\cdots\) |
180.2.i.b |
$180$ |
$2$ |
180.i |
9.c |
$3$ |
$6$ |
$3$ |
$1.437$ |
6.0.954288.1 |
$_{}$ |
None |
None |
|
✓ |
✓ |
|
180.2.i.b |
$2$ |
$0$ |
\(0\) |
\(-1\) |
\(3\) |
\(-3\) |
|
$3$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q-\beta _{1}q^{3}+(1+\beta _{2})q^{5}+(\beta _{2}-\beta _{3}-\beta _{4}+\cdots)q^{7}+\cdots\) |
180.2.j.a |
$180$ |
$2$ |
180.j |
15.e |
$4$ |
$4$ |
$2$ |
$1.437$ |
\(\Q(\zeta_{8})\) |
$_{}$ |
None |
None |
|
✓ |
✓ |
✓ |
180.2.j.a |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(8\) |
|
$1$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q+(-2\zeta_{8}-\zeta_{8}^{3})q^{5}+(2-2\zeta_{8}^{2})q^{7}+\cdots\) |
180.2.k.a |
$180$ |
$2$ |
180.k |
20.e |
$4$ |
$2$ |
$1$ |
$1.437$ |
\(\Q(\sqrt{-1}) \) |
$_{}$ |
\(\Q(\sqrt{-1}) \) |
None |
|
✓ |
|
|
180.2.k.a |
$4$ |
$0$ |
\(-2\) |
\(0\) |
\(2\) |
\(0\) |
|
$1$ |
$\mathrm{U}(1)[D_{4}]$ |
\(q+(-1-i)q^{2}+2iq^{4}+(1-2i)q^{5}+\cdots\) |
180.2.k.b |
$180$ |
$2$ |
180.k |
20.e |
$4$ |
$2$ |
$1$ |
$1.437$ |
\(\Q(\sqrt{-1}) \) |
$_{}$ |
\(\Q(\sqrt{-1}) \) |
None |
|
✓ |
|
|
180.2.k.a |
$4$ |
$0$ |
\(2\) |
\(0\) |
\(-2\) |
\(0\) |
|
$1$ |
$\mathrm{U}(1)[D_{4}]$ |
\(q+(1+i)q^{2}+2iq^{4}+(-1+2i)q^{5}+\cdots\) |
180.2.k.c |
$180$ |
$2$ |
180.k |
20.e |
$4$ |
$2$ |
$1$ |
$1.437$ |
\(\Q(\sqrt{-1}) \) |
$_{}$ |
\(\Q(\sqrt{-1}) \) |
None |
|
|
|
|
20.2.e.a |
$4$ |
$0$ |
\(2\) |
\(0\) |
\(4\) |
\(0\) |
|
$1$ |
$\mathrm{U}(1)[D_{4}]$ |
\(q+(1+i)q^{2}+2iq^{4}+(2-i)q^{5}+(-2+\cdots)q^{8}+\cdots\) |
180.2.k.d |
$180$ |
$2$ |
180.k |
20.e |
$4$ |
$8$ |
$4$ |
$1.437$ |
8.0.157351936.1 |
$_{}$ |
None |
None |
|
✓ |
|
|
180.2.k.d |
$8$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(0\) |
|
$1$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q+(\beta _{2}+\beta _{4})q^{2}+(\beta _{3}+\beta _{5})q^{4}+(2\beta _{4}+\cdots)q^{5}+\cdots\) |
180.2.k.e |
$180$ |
$2$ |
180.k |
20.e |
$4$ |
$12$ |
$6$ |
$1.437$ |
12.0.\(\cdots\).1 |
$_{}$ |
None |
None |
|
|
✓ |
|
60.2.j.a |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(0\) |
|
$2^{5}$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q+\beta _{1}q^{2}+\beta _{2}q^{4}+(-1-\beta _{1}+\beta _{7}+\cdots)q^{5}+\cdots\) |
180.2.n.a |
$180$ |
$2$ |
180.n |
180.n |
$6$ |
$4$ |
$2$ |
$1.437$ |
\(\Q(\sqrt{2}, \sqrt{-3})\) |
$_{}$ |
None |
None |
|
✓ |
|
|
180.2.n.a |
$4$ |
$0$ |
\(0\) |
\(-6\) |
\(6\) |
\(6\) |
|
$1$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q+\beta _{1}q^{2}+(-2-\beta _{2})q^{3}+2\beta _{2}q^{4}+\cdots\) |
180.2.n.b |
$180$ |
$2$ |
180.n |
180.n |
$6$ |
$4$ |
$2$ |
$1.437$ |
\(\Q(\sqrt{2}, \sqrt{-3})\) |
$_{}$ |
None |
None |
|
✓ |
|
|
180.2.n.a |
$4$ |
$0$ |
\(0\) |
\(6\) |
\(6\) |
\(-6\) |
|
$1$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q+\beta _{1}q^{2}+(2+\beta _{2})q^{3}+2\beta _{2}q^{4}+(2+\cdots)q^{5}+\cdots\) |
180.2.n.c |
$180$ |
$2$ |
180.n |
180.n |
$6$ |
$8$ |
$4$ |
$1.437$ |
8.0.3317760000.8 |
$_{}$ |
\(\Q(\sqrt{-5}) \) |
None |
|
✓ |
|
|
180.2.n.c |
$8$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(0\) |
|
$1$ |
$\mathrm{U}(1)[D_{6}]$ |
\(q+\beta _{5}q^{2}+\beta _{1}q^{3}+2\beta _{3}q^{4}-\beta _{2}q^{5}+\cdots\) |
180.2.n.d |
$180$ |
$2$ |
180.n |
180.n |
$6$ |
$48$ |
$24$ |
$1.437$ |
|
$_{}$ |
None |
None |
|
✓ |
✓ |
|
180.2.n.d |
$8$ |
$0$ |
\(0\) |
\(0\) |
\(-18\) |
\(0\) |
|
|
$\mathrm{SU}(2)[C_{6}]$ |
|
180.2.q.a |
$180$ |
$2$ |
180.q |
36.h |
$6$ |
$48$ |
$24$ |
$1.437$ |
|
$_{}$ |
None |
None |
|
✓ |
✓ |
✓ |
180.2.q.a |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(0\) |
|
|
$\mathrm{SU}(2)[C_{6}]$ |
|
180.2.r.a |
$180$ |
$2$ |
180.r |
45.j |
$6$ |
$12$ |
$6$ |
$1.437$ |
\(\mathbb{Q}[x]/(x^{12} - \cdots)\) |
$_{}$ |
None |
None |
|
✓ |
✓ |
✓ |
180.2.r.a |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(1\) |
\(0\) |
|
$1$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q+\beta _{1}q^{3}+\beta _{9}q^{5}+(-\beta _{3}+\beta _{6}-\beta _{7}+\cdots)q^{7}+\cdots\) |
180.2.w.a |
$180$ |
$2$ |
180.w |
45.l |
$12$ |
$24$ |
$6$ |
$1.437$ |
|
$_{}$ |
None |
None |
|
✓ |
✓ |
✓ |
180.2.w.a |
$4$ |
$0$ |
\(0\) |
\(-2\) |
\(0\) |
\(0\) |
|
|
$\mathrm{SU}(2)[C_{12}]$ |
|
180.2.x.a |
$180$ |
$2$ |
180.x |
180.x |
$12$ |
$128$ |
$32$ |
$1.437$ |
|
$_{}$ |
None |
None |
|
✓ |
✓ |
✓ |
180.2.x.a |
$8$ |
$0$ |
\(-2\) |
\(0\) |
\(-4\) |
\(0\) |
|
|
$\mathrm{SU}(2)[C_{12}]$ |
|
180.3.b.a |
$180$ |
$3$ |
180.b |
15.d |
$2$ |
$4$ |
$4$ |
$4.905$ |
\(\Q(\sqrt{-2}, \sqrt{23})\) |
$_{}$ |
None |
None |
|
✓ |
✓ |
✓ |
180.3.b.a |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(0\) |
|
$2$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q+(-\beta _{1}+\beta _{3})q^{5}-\beta _{2}q^{7}+7\beta _{1}q^{11}+\cdots\) |
180.3.c.a |
$180$ |
$3$ |
180.c |
4.b |
$2$ |
$4$ |
$4$ |
$4.905$ |
\(\Q(\zeta_{10})\) |
$_{}$ |
None |
None |
|
|
|
|
20.3.b.a |
$2$ |
$0$ |
\(2\) |
\(0\) |
\(0\) |
\(0\) |
|
$2^{4}$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q+\zeta_{10}q^{2}+(-1+\zeta_{10}+\zeta_{10}^{2}+\zeta_{10}^{3})q^{4}+\cdots\) |
180.3.c.b |
$180$ |
$3$ |
180.c |
4.b |
$2$ |
$8$ |
$8$ |
$4.905$ |
8.0.85100625.1 |
$_{}$ |
None |
None |
|
|
|
|
60.3.c.a |
$2$ |
$0$ |
\(-4\) |
\(0\) |
\(0\) |
\(0\) |
|
$2^{10}$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q-\beta _{5}q^{2}+(1+\beta _{3}+\beta _{4}+\beta _{5})q^{4}+\beta _{3}q^{5}+\cdots\) |
180.3.c.c |
$180$ |
$3$ |
180.c |
4.b |
$2$ |
$8$ |
$8$ |
$4.905$ |
8.0.\(\cdots\).1 |
$_{}$ |
None |
None |
|
✓ |
|
|
180.3.c.c |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(0\) |
|
$2^{10}$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q+\beta _{1}q^{2}+(-2-\beta _{4})q^{4}+\beta _{3}q^{5}+2\beta _{6}q^{7}+\cdots\) |
180.3.f.a |
$180$ |
$3$ |
180.f |
20.d |
$2$ |
$1$ |
$1$ |
$4.905$ |
\(\Q\) |
$_{}$ |
\(\Q(\sqrt{-5}) \) |
None |
✓ |
|
|
|
20.3.d.a |
$2$ |
$0$ |
\(-2\) |
\(0\) |
\(5\) |
\(4\) |
|
$1$ |
$\mathrm{U}(1)[D_{2}]$ |
\(q-2q^{2}+4q^{4}+5q^{5}+4q^{7}-8q^{8}+\cdots\) |
180.3.f.b |
$180$ |
$3$ |
180.f |
20.d |
$2$ |
$1$ |
$1$ |
$4.905$ |
\(\Q\) |
$_{}$ |
\(\Q(\sqrt{-5}) \) |
None |
✓ |
|
|
|
20.3.d.a |
$2$ |
$0$ |
\(2\) |
\(0\) |
\(5\) |
\(-4\) |
|
$1$ |
$\mathrm{U}(1)[D_{2}]$ |
\(q+2q^{2}+4q^{4}+5q^{5}-4q^{7}+8q^{8}+\cdots\) |
180.3.f.c |
$180$ |
$3$ |
180.f |
20.d |
$2$ |
$2$ |
$2$ |
$4.905$ |
\(\Q(\sqrt{-1}) \) |
$_{}$ |
\(\Q(\sqrt{-1}) \) |
None |
|
|
|
|
20.3.d.c |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(-6\) |
\(0\) |
|
$2$ |
$\mathrm{U}(1)[D_{2}]$ |
\(q+iq^{2}-4q^{4}+(-3-2i)q^{5}-4iq^{8}+\cdots\) |
180.3.f.d |
$180$ |
$3$ |
180.f |
20.d |
$2$ |
$4$ |
$4$ |
$4.905$ |
\(\Q(\sqrt{-3}, \sqrt{22})\) |
$_{}$ |
None |
None |
|
✓ |
|
|
180.3.f.d |
$4$ |
$0$ |
\(-4\) |
\(0\) |
\(0\) |
\(0\) |
|
$2^{2}$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q+(-1-\beta _{2})q^{2}+(-2+2\beta _{2})q^{4}+(\beta _{1}+\cdots)q^{5}+\cdots\) |
180.3.f.e |
$180$ |
$3$ |
180.f |
20.d |
$2$ |
$4$ |
$4$ |
$4.905$ |
\(\Q(\zeta_{12})\) |
$_{}$ |
None |
None |
|
|
|
|
60.3.f.a |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(0\) |
|
$2^{2}$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q+(\zeta_{12}+\zeta_{12}^{3})q^{2}+(2+2\zeta_{12}^{2})q^{4}+\cdots\) |
180.3.f.f |
$180$ |
$3$ |
180.f |
20.d |
$2$ |
$4$ |
$4$ |
$4.905$ |
\(\Q(i, \sqrt{15})\) |
$_{}$ |
\(\Q(\sqrt{-15}) \) |
None |
|
✓ |
|
|
180.3.f.f |
$8$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(0\) |
|
$1$ |
$\mathrm{U}(1)[D_{2}]$ |
\(q+\beta _{1}q^{2}+(4+\beta _{3})q^{4}+5\beta _{2}q^{5}+(3\beta _{1}+\cdots)q^{8}+\cdots\) |
180.3.f.g |
$180$ |
$3$ |
180.f |
20.d |
$2$ |
$4$ |
$4$ |
$4.905$ |
\(\Q(\sqrt{-3}, \sqrt{22})\) |
$_{}$ |
None |
None |
|
✓ |
|
|
180.3.f.d |
$4$ |
$0$ |
\(4\) |
\(0\) |
\(0\) |
\(0\) |
|
$2^{2}$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q+(1+\beta _{2})q^{2}+(-2+2\beta _{2})q^{4}+(-\beta _{1}+\cdots)q^{5}+\cdots\) |
180.3.f.h |
$180$ |
$3$ |
180.f |
20.d |
$2$ |
$8$ |
$8$ |
$4.905$ |
8.0.\(\cdots\).4 |
$_{}$ |
None |
None |
|
|
✓ |
|
60.3.f.b |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(-4\) |
\(0\) |
|
$2^{8}$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q+\beta _{1}q^{2}+(-1+\beta _{2})q^{4}+(-1+\beta _{1}+\cdots)q^{5}+\cdots\) |
180.3.g.a |
$180$ |
$3$ |
180.g |
3.b |
$2$ |
$4$ |
$4$ |
$4.905$ |
\(\Q(\sqrt{-2}, \sqrt{-5})\) |
$_{}$ |
None |
None |
|
✓ |
✓ |
✓ |
180.3.g.a |
$2$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(-16\) |
|
$2\cdot 3^{2}$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q-\beta _{2}q^{5}+(-4-\beta _{3})q^{7}+(-\beta _{1}-6\beta _{2}+\cdots)q^{11}+\cdots\) |
180.3.l.a |
$180$ |
$3$ |
180.l |
5.c |
$4$ |
$2$ |
$1$ |
$4.905$ |
\(\Q(\sqrt{-1}) \) |
$_{}$ |
None |
None |
|
|
|
|
20.3.f.a |
$2$ |
$0$ |
\(0\) |
\(0\) |
\(6\) |
\(-14\) |
|
$1$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q+(3-4i)q^{5}+(-7-7i)q^{7}-10q^{11}+\cdots\) |
180.3.l.b |
$180$ |
$3$ |
180.l |
5.c |
$4$ |
$4$ |
$2$ |
$4.905$ |
\(\Q(i, \sqrt{6})\) |
$_{}$ |
None |
None |
|
|
|
|
60.3.k.a |
$2$ |
$0$ |
\(0\) |
\(0\) |
\(-12\) |
\(20\) |
|
$1$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q+(-3-2\beta _{1}+\beta _{2}-\beta _{3})q^{5}+(5+2\beta _{1}+\cdots)q^{7}+\cdots\) |
180.3.l.c |
$180$ |
$3$ |
180.l |
5.c |
$4$ |
$4$ |
$2$ |
$4.905$ |
\(\Q(i, \sqrt{10})\) |
$_{}$ |
None |
None |
|
✓ |
|
|
180.3.l.c |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(-4\) |
|
$5$ |
$\mathrm{SU}(2)[C_{4}]$ |
\(q+\beta _{2}q^{5}+(-1-\beta _{1})q^{7}+(3\beta _{2}-\beta _{3})q^{11}+\cdots\) |
180.3.m.a |
$180$ |
$3$ |
180.m |
60.l |
$4$ |
$4$ |
$2$ |
$4.905$ |
\(\Q(\zeta_{8})\) |
$_{}$ |
\(\Q(\sqrt{-1}) \) |
None |
|
✓ |
|
|
180.3.m.a |
$8$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(0\) |
|
$1$ |
$\mathrm{U}(1)[D_{4}]$ |
\(q+2\zeta_{8}q^{2}+4\zeta_{8}^{2}q^{4}+(4\zeta_{8}+3\zeta_{8}^{3})q^{5}+\cdots\) |
180.3.m.b |
$180$ |
$3$ |
180.m |
60.l |
$4$ |
$4$ |
$2$ |
$4.905$ |
\(\Q(\zeta_{8})\) |
$_{}$ |
\(\Q(\sqrt{-1}) \) |
None |
|
✓ |
|
|
180.3.m.b |
$8$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(0\) |
|
$1$ |
$\mathrm{U}(1)[D_{4}]$ |
\(q+2\zeta_{8}q^{2}+4\zeta_{8}^{2}q^{4}+(4\zeta_{8}-3\zeta_{8}^{3})q^{5}+\cdots\) |
180.3.m.c |
$180$ |
$3$ |
180.m |
60.l |
$4$ |
$40$ |
$20$ |
$4.905$ |
|
$_{}$ |
None |
None |
|
✓ |
✓ |
|
180.3.m.c |
$8$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(0\) |
|
|
$\mathrm{SU}(2)[C_{4}]$ |
|
180.3.o.a |
$180$ |
$3$ |
180.o |
9.d |
$6$ |
$4$ |
$2$ |
$4.905$ |
\(\Q(\sqrt{-3}, \sqrt{-5})\) |
$_{}$ |
None |
None |
|
✓ |
|
|
180.3.o.a |
$2$ |
$0$ |
\(0\) |
\(-6\) |
\(0\) |
\(8\) |
|
$1$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q+(-3+3\beta _{2})q^{3}+(-\beta _{1}+\beta _{3})q^{5}+\cdots\) |
180.3.o.b |
$180$ |
$3$ |
180.o |
9.d |
$6$ |
$12$ |
$6$ |
$4.905$ |
\(\mathbb{Q}[x]/(x^{12} - \cdots)\) |
$_{}$ |
None |
None |
|
✓ |
✓ |
|
180.3.o.b |
$2$ |
$0$ |
\(0\) |
\(2\) |
\(0\) |
\(-6\) |
|
$3^{3}$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q+\beta _{1}q^{3}+\beta _{8}q^{5}+(\beta _{1}+\beta _{3}-\beta _{5}-\beta _{6}+\cdots)q^{7}+\cdots\) |
180.3.p.a |
$180$ |
$3$ |
180.p |
180.p |
$6$ |
$4$ |
$2$ |
$4.905$ |
\(\Q(\sqrt{-3}, \sqrt{-5})\) |
$_{}$ |
\(\Q(\sqrt{-5}) \) |
None |
|
✓ |
|
|
180.3.p.a |
$4$ |
$0$ |
\(-4\) |
\(4\) |
\(10\) |
\(4\) |
|
$1$ |
$\mathrm{U}(1)[D_{6}]$ |
\(q+(-2+2\beta _{2})q^{2}+(\beta _{1}+2\beta _{2}-\beta _{3})q^{3}+\cdots\) |
180.3.p.b |
$180$ |
$3$ |
180.p |
180.p |
$6$ |
$4$ |
$2$ |
$4.905$ |
\(\Q(\sqrt{-3}, \sqrt{-5})\) |
$_{}$ |
\(\Q(\sqrt{-5}) \) |
None |
|
✓ |
|
|
180.3.p.a |
$4$ |
$0$ |
\(4\) |
\(-4\) |
\(10\) |
\(-4\) |
|
$1$ |
$\mathrm{U}(1)[D_{6}]$ |
\(q+(2-2\beta _{2})q^{2}+(\beta _{1}-2\beta _{2}-\beta _{3})q^{3}+\cdots\) |
180.3.p.c |
$180$ |
$3$ |
180.p |
180.p |
$6$ |
$128$ |
$64$ |
$4.905$ |
|
$_{}$ |
None |
None |
|
✓ |
✓ |
|
180.3.p.c |
$8$ |
$0$ |
\(0\) |
\(0\) |
\(-22\) |
\(0\) |
|
|
$\mathrm{SU}(2)[C_{6}]$ |
|
180.3.s.a |
$180$ |
$3$ |
180.s |
36.f |
$6$ |
$96$ |
$48$ |
$4.905$ |
|
$_{}$ |
None |
None |
|
✓ |
✓ |
✓ |
180.3.s.a |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(0\) |
|
|
$\mathrm{SU}(2)[C_{6}]$ |
|