Properties

Label 2-10e2-20.19-c8-0-17
Degree $2$
Conductor $100$
Sign $0.124 - 0.992i$
Analytic cond. $40.7378$
Root an. cond. $6.38262$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−15.3 − 4.64i)2-s + 75.7·3-s + (212. + 142. i)4-s + (−1.15e3 − 351. i)6-s − 210.·7-s + (−2.60e3 − 3.16e3i)8-s − 823.·9-s − 141. i·11-s + (1.61e4 + 1.07e4i)12-s − 1.76e4i·13-s + (3.22e3 + 976. i)14-s + (2.51e4 + 6.05e4i)16-s + 1.02e5i·17-s + (1.26e4 + 3.81e3i)18-s + 1.07e5i·19-s + ⋯
L(s)  = 1  + (−0.957 − 0.290i)2-s + 0.935·3-s + (0.831 + 0.555i)4-s + (−0.894 − 0.271i)6-s − 0.0876·7-s + (−0.635 − 0.772i)8-s − 0.125·9-s − 0.00967i·11-s + (0.777 + 0.519i)12-s − 0.618i·13-s + (0.0838 + 0.0254i)14-s + (0.383 + 0.923i)16-s + 1.22i·17-s + (0.120 + 0.0363i)18-s + 0.821i·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.124 - 0.992i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.124 - 0.992i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(100\)    =    \(2^{2} \cdot 5^{2}\)
Sign: $0.124 - 0.992i$
Analytic conductor: \(40.7378\)
Root analytic conductor: \(6.38262\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{100} (99, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 100,\ (\ :4),\ 0.124 - 0.992i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.881413 + 0.777726i\)
\(L(\frac12)\) \(\approx\) \(0.881413 + 0.777726i\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (15.3 + 4.64i)T \)
5 \( 1 \)
good3 \( 1 - 75.7T + 6.56e3T^{2} \)
7 \( 1 + 210.T + 5.76e6T^{2} \)
11 \( 1 + 141. iT - 2.14e8T^{2} \)
13 \( 1 + 1.76e4iT - 8.15e8T^{2} \)
17 \( 1 - 1.02e5iT - 6.97e9T^{2} \)
19 \( 1 - 1.07e5iT - 1.69e10T^{2} \)
23 \( 1 - 4.55e5T + 7.83e10T^{2} \)
29 \( 1 + 8.65e5T + 5.00e11T^{2} \)
31 \( 1 + 4.29e5iT - 8.52e11T^{2} \)
37 \( 1 - 2.51e6iT - 3.51e12T^{2} \)
41 \( 1 + 2.98e6T + 7.98e12T^{2} \)
43 \( 1 - 2.22e6T + 1.16e13T^{2} \)
47 \( 1 - 7.63e6T + 2.38e13T^{2} \)
53 \( 1 - 1.55e7iT - 6.22e13T^{2} \)
59 \( 1 - 6.38e6iT - 1.46e14T^{2} \)
61 \( 1 - 2.03e6T + 1.91e14T^{2} \)
67 \( 1 + 2.03e7T + 4.06e14T^{2} \)
71 \( 1 - 4.44e7iT - 6.45e14T^{2} \)
73 \( 1 - 1.79e7iT - 8.06e14T^{2} \)
79 \( 1 - 2.03e7iT - 1.51e15T^{2} \)
83 \( 1 - 5.09e7T + 2.25e15T^{2} \)
89 \( 1 - 2.68e7T + 3.93e15T^{2} \)
97 \( 1 + 3.38e7iT - 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.48267397218804964469954422237, −11.19455724227666121987502312862, −10.21800243059818212238812154268, −9.109729235312659012131093579472, −8.322189081195524003054897254138, −7.40833362088262785064669368832, −5.90811515126426938808532728357, −3.68912084069493367306084390960, −2.66886630245090583057301651618, −1.32181635623518679226456350833, 0.40351504589852197422590029408, 2.05284333765794749616276527082, 3.17239155099017873212271105313, 5.20467709270118733390453973277, 6.81144567283220552432352777877, 7.67647253515749013084825903623, 9.092218687146526313567162393236, 9.219587516109296489450923709647, 10.82830691440973519001128833701, 11.71372146629127587461260492220

Graph of the $Z$-function along the critical line