Properties

Label 100.9.d.c.99.3
Level $100$
Weight $9$
Character 100.99
Analytic conductor $40.738$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [100,9,Mod(99,100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(100, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("100.99"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 100 = 2^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 100.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,104] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(40.7378610061\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.3
Character \(\chi\) \(=\) 100.99
Dual form 100.9.d.c.99.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-15.3124 - 4.64016i) q^{2} +75.7492 q^{3} +(212.938 + 142.104i) q^{4} +(-1159.90 - 351.488i) q^{6} -210.345 q^{7} +(-2601.20 - 3164.01i) q^{8} -823.060 q^{9} -141.724i q^{11} +(16129.9 + 10764.2i) q^{12} -17655.5i q^{13} +(3220.88 + 976.035i) q^{14} +(25149.0 + 60518.5i) q^{16} +102231. i q^{17} +(12603.0 + 3819.13i) q^{18} +107088. i q^{19} -15933.5 q^{21} +(-657.620 + 2170.13i) q^{22} +455526. q^{23} +(-197039. - 239671. i) q^{24} +(-81924.3 + 270348. i) q^{26} -559337. q^{27} +(-44790.4 - 29890.8i) q^{28} -865184. q^{29} -429788. i q^{31} +(-104276. - 1.04338e6i) q^{32} -10735.4i q^{33} +(474366. - 1.56539e6i) q^{34} +(-175261. - 116960. i) q^{36} +2.51809e6i q^{37} +(496908. - 1.63978e6i) q^{38} -1.33739e6i q^{39} -2.98042e6 q^{41} +(243979. + 73933.8i) q^{42} +2.22228e6 q^{43} +(20139.5 - 30178.3i) q^{44} +(-6.97518e6 - 2.11371e6i) q^{46} +7.63886e6 q^{47} +(1.90502e6 + 4.58423e6i) q^{48} -5.72056e6 q^{49} +7.74388e6i q^{51} +(2.50891e6 - 3.75952e6i) q^{52} +1.55615e7i q^{53} +(8.56477e6 + 2.59541e6i) q^{54} +(547149. + 665534. i) q^{56} +8.11187e6i q^{57} +(1.32480e7 + 4.01459e6i) q^{58} +6.38433e6i q^{59} +2.03289e6 q^{61} +(-1.99429e6 + 6.58108e6i) q^{62} +173127. q^{63} +(-3.24473e6 + 1.64605e7i) q^{64} +(-49814.2 + 164385. i) q^{66} -2.03503e7 q^{67} +(-1.45274e7 + 2.17688e7i) q^{68} +3.45057e7 q^{69} +4.44463e7i q^{71} +(2.14094e6 + 2.60417e6i) q^{72} +1.79865e7i q^{73} +(1.16843e7 - 3.85579e7i) q^{74} +(-1.52177e7 + 2.28032e7i) q^{76} +29810.9i q^{77} +(-6.20570e6 + 2.04786e7i) q^{78} +2.03988e7i q^{79} -3.69692e7 q^{81} +(4.56374e7 + 1.38296e7i) q^{82} +5.09090e7 q^{83} +(-3.39284e6 - 2.26421e6i) q^{84} +(-3.40284e7 - 1.03117e7i) q^{86} -6.55370e7 q^{87} +(-448415. + 368651. i) q^{88} +2.68313e7 q^{89} +3.71375e6i q^{91} +(9.69986e7 + 6.47319e7i) q^{92} -3.25561e7i q^{93} +(-1.16969e8 - 3.54456e7i) q^{94} +(-7.89880e6 - 7.90351e7i) q^{96} -3.38260e7i q^{97} +(8.75953e7 + 2.65443e7i) q^{98} +116647. i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 104 q^{4} + 8736 q^{6} + 77600 q^{9} - 136944 q^{14} - 162848 q^{16} + 828992 q^{21} - 327584 q^{24} + 2074248 q^{26} - 5529792 q^{29} - 7587928 q^{34} - 10937832 q^{36} - 17152896 q^{41} - 33842400 q^{44}+ \cdots - 906779904 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/100\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(77\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −15.3124 4.64016i −0.957024 0.290010i
\(3\) 75.7492 0.935175 0.467588 0.883947i \(-0.345123\pi\)
0.467588 + 0.883947i \(0.345123\pi\)
\(4\) 212.938 + 142.104i 0.831788 + 0.555093i
\(5\) 0 0
\(6\) −1159.90 351.488i −0.894985 0.271210i
\(7\) −210.345 −0.0876072 −0.0438036 0.999040i \(-0.513948\pi\)
−0.0438036 + 0.999040i \(0.513948\pi\)
\(8\) −2601.20 3164.01i −0.635059 0.772464i
\(9\) −823.060 −0.125447
\(10\) 0 0
\(11\) 141.724i 0.00967991i −0.999988 0.00483996i \(-0.998459\pi\)
0.999988 0.00483996i \(-0.00154061\pi\)
\(12\) 16129.9 + 10764.2i 0.777868 + 0.519109i
\(13\) 17655.5i 0.618168i −0.951035 0.309084i \(-0.899978\pi\)
0.951035 0.309084i \(-0.100022\pi\)
\(14\) 3220.88 + 976.035i 0.0838422 + 0.0254070i
\(15\) 0 0
\(16\) 25149.0 + 60518.5i 0.383744 + 0.923440i
\(17\) 102231.i 1.22401i 0.790854 + 0.612005i \(0.209637\pi\)
−0.790854 + 0.612005i \(0.790363\pi\)
\(18\) 12603.0 + 3819.13i 0.120056 + 0.0363810i
\(19\) 107088.i 0.821728i 0.911697 + 0.410864i \(0.134773\pi\)
−0.911697 + 0.410864i \(0.865227\pi\)
\(20\) 0 0
\(21\) −15933.5 −0.0819281
\(22\) −657.620 + 2170.13i −0.00280727 + 0.00926391i
\(23\) 455526. 1.62780 0.813901 0.581004i \(-0.197340\pi\)
0.813901 + 0.581004i \(0.197340\pi\)
\(24\) −197039. 239671.i −0.593891 0.722389i
\(25\) 0 0
\(26\) −81924.3 + 270348.i −0.179275 + 0.591601i
\(27\) −559337. −1.05249
\(28\) −44790.4 29890.8i −0.0728707 0.0486302i
\(29\) −865184. −1.22325 −0.611627 0.791146i \(-0.709485\pi\)
−0.611627 + 0.791146i \(0.709485\pi\)
\(30\) 0 0
\(31\) 429788.i 0.465380i −0.972551 0.232690i \(-0.925247\pi\)
0.972551 0.232690i \(-0.0747528\pi\)
\(32\) −104276. 1.04338e6i −0.0994450 0.995043i
\(33\) 10735.4i 0.00905241i
\(34\) 474366. 1.56539e6i 0.354975 1.17141i
\(35\) 0 0
\(36\) −175261. 116960.i −0.104346 0.0696349i
\(37\) 2.51809e6i 1.34358i 0.740741 + 0.671791i \(0.234475\pi\)
−0.740741 + 0.671791i \(0.765525\pi\)
\(38\) 496908. 1.63978e6i 0.238310 0.786414i
\(39\) 1.33739e6i 0.578095i
\(40\) 0 0
\(41\) −2.98042e6 −1.05473 −0.527366 0.849638i \(-0.676820\pi\)
−0.527366 + 0.849638i \(0.676820\pi\)
\(42\) 243979. + 73933.8i 0.0784071 + 0.0237600i
\(43\) 2.22228e6 0.650018 0.325009 0.945711i \(-0.394633\pi\)
0.325009 + 0.945711i \(0.394633\pi\)
\(44\) 20139.5 30178.3i 0.00537325 0.00805164i
\(45\) 0 0
\(46\) −6.97518e6 2.11371e6i −1.55784 0.472079i
\(47\) 7.63886e6 1.56544 0.782722 0.622372i \(-0.213831\pi\)
0.782722 + 0.622372i \(0.213831\pi\)
\(48\) 1.90502e6 + 4.58423e6i 0.358868 + 0.863578i
\(49\) −5.72056e6 −0.992325
\(50\) 0 0
\(51\) 7.74388e6i 1.14466i
\(52\) 2.50891e6 3.75952e6i 0.343141 0.514185i
\(53\) 1.55615e7i 1.97219i 0.166186 + 0.986094i \(0.446855\pi\)
−0.166186 + 0.986094i \(0.553145\pi\)
\(54\) 8.56477e6 + 2.59541e6i 1.00726 + 0.305233i
\(55\) 0 0
\(56\) 547149. + 665534.i 0.0556357 + 0.0676734i
\(57\) 8.11187e6i 0.768460i
\(58\) 1.32480e7 + 4.01459e6i 1.17068 + 0.354756i
\(59\) 6.38433e6i 0.526874i 0.964677 + 0.263437i \(0.0848562\pi\)
−0.964677 + 0.263437i \(0.915144\pi\)
\(60\) 0 0
\(61\) 2.03289e6 0.146823 0.0734116 0.997302i \(-0.476611\pi\)
0.0734116 + 0.997302i \(0.476611\pi\)
\(62\) −1.99429e6 + 6.58108e6i −0.134965 + 0.445380i
\(63\) 173127. 0.0109901
\(64\) −3.24473e6 + 1.64605e7i −0.193401 + 0.981120i
\(65\) 0 0
\(66\) −49814.2 + 164385.i −0.00262529 + 0.00866337i
\(67\) −2.03503e7 −1.00988 −0.504941 0.863154i \(-0.668486\pi\)
−0.504941 + 0.863154i \(0.668486\pi\)
\(68\) −1.45274e7 + 2.17688e7i −0.679439 + 1.01812i
\(69\) 3.45057e7 1.52228
\(70\) 0 0
\(71\) 4.44463e7i 1.74905i 0.484979 + 0.874526i \(0.338827\pi\)
−0.484979 + 0.874526i \(0.661173\pi\)
\(72\) 2.14094e6 + 2.60417e6i 0.0796664 + 0.0969036i
\(73\) 1.79865e7i 0.633366i 0.948531 + 0.316683i \(0.102569\pi\)
−0.948531 + 0.316683i \(0.897431\pi\)
\(74\) 1.16843e7 3.85579e7i 0.389652 1.28584i
\(75\) 0 0
\(76\) −1.52177e7 + 2.28032e7i −0.456136 + 0.683504i
\(77\) 29810.9i 0.000848031i
\(78\) −6.20570e6 + 2.04786e7i −0.167653 + 0.553251i
\(79\) 2.03988e7i 0.523716i 0.965106 + 0.261858i \(0.0843352\pi\)
−0.965106 + 0.261858i \(0.915665\pi\)
\(80\) 0 0
\(81\) −3.69692e7 −0.858816
\(82\) 4.56374e7 + 1.38296e7i 1.00940 + 0.305883i
\(83\) 5.09090e7 1.07271 0.536355 0.843992i \(-0.319801\pi\)
0.536355 + 0.843992i \(0.319801\pi\)
\(84\) −3.39284e6 2.26421e6i −0.0681469 0.0454777i
\(85\) 0 0
\(86\) −3.40284e7 1.03117e7i −0.622082 0.188512i
\(87\) −6.55370e7 −1.14396
\(88\) −448415. + 368651.i −0.00747738 + 0.00614731i
\(89\) 2.68313e7 0.427644 0.213822 0.976873i \(-0.431409\pi\)
0.213822 + 0.976873i \(0.431409\pi\)
\(90\) 0 0
\(91\) 3.71375e6i 0.0541560i
\(92\) 9.69986e7 + 6.47319e7i 1.35399 + 0.903581i
\(93\) 3.25561e7i 0.435212i
\(94\) −1.16969e8 3.54456e7i −1.49817 0.453994i
\(95\) 0 0
\(96\) −7.89880e6 7.90351e7i −0.0929985 0.930540i
\(97\) 3.38260e7i 0.382089i −0.981581 0.191044i \(-0.938813\pi\)
0.981581 0.191044i \(-0.0611874\pi\)
\(98\) 8.75953e7 + 2.65443e7i 0.949678 + 0.287784i
\(99\) 116647.i 0.00121432i
\(100\) 0 0
\(101\) 5.46440e7 0.525118 0.262559 0.964916i \(-0.415434\pi\)
0.262559 + 0.964916i \(0.415434\pi\)
\(102\) 3.59329e7 1.18577e8i 0.331964 1.09547i
\(103\) 5.49350e6 0.0488090 0.0244045 0.999702i \(-0.492231\pi\)
0.0244045 + 0.999702i \(0.492231\pi\)
\(104\) −5.58622e7 + 4.59255e7i −0.477513 + 0.392573i
\(105\) 0 0
\(106\) 7.22080e7 2.38284e8i 0.571955 1.88743i
\(107\) −4.58185e7 −0.349547 −0.174773 0.984609i \(-0.555919\pi\)
−0.174773 + 0.984609i \(0.555919\pi\)
\(108\) −1.19104e8 7.94838e7i −0.875449 0.584230i
\(109\) −1.34989e8 −0.956295 −0.478147 0.878280i \(-0.658692\pi\)
−0.478147 + 0.878280i \(0.658692\pi\)
\(110\) 0 0
\(111\) 1.90743e8i 1.25648i
\(112\) −5.28997e6 1.27298e7i −0.0336187 0.0809000i
\(113\) 1.52579e8i 0.935796i −0.883783 0.467898i \(-0.845011\pi\)
0.883783 0.467898i \(-0.154989\pi\)
\(114\) 3.76404e7 1.24212e8i 0.222861 0.735434i
\(115\) 0 0
\(116\) −1.84230e8 1.22946e8i −1.01749 0.679020i
\(117\) 1.45315e7i 0.0775475i
\(118\) 2.96243e7 9.77592e7i 0.152799 0.504231i
\(119\) 2.15037e7i 0.107232i
\(120\) 0 0
\(121\) 2.14339e8 0.999906
\(122\) −3.11284e7 9.43293e6i −0.140513 0.0425802i
\(123\) −2.25765e8 −0.986360
\(124\) 6.10746e7 9.15182e7i 0.258329 0.387098i
\(125\) 0 0
\(126\) −2.65098e6 803335.i −0.0105178 0.00318724i
\(127\) −3.88910e8 −1.49498 −0.747488 0.664275i \(-0.768740\pi\)
−0.747488 + 0.664275i \(0.768740\pi\)
\(128\) 1.26064e8 2.36993e8i 0.469624 0.882866i
\(129\) 1.68336e8 0.607880
\(130\) 0 0
\(131\) 5.32310e8i 1.80750i 0.428056 + 0.903752i \(0.359199\pi\)
−0.428056 + 0.903752i \(0.640801\pi\)
\(132\) 1.52555e6 2.28598e6i 0.00502493 0.00752969i
\(133\) 2.25255e7i 0.0719894i
\(134\) 3.11611e8 + 9.44285e7i 0.966482 + 0.292876i
\(135\) 0 0
\(136\) 3.23459e8 2.65922e8i 0.945504 0.777318i
\(137\) 5.11356e8i 1.45158i 0.687916 + 0.725790i \(0.258526\pi\)
−0.687916 + 0.725790i \(0.741474\pi\)
\(138\) −5.28364e8 1.60112e8i −1.45686 0.441476i
\(139\) 4.03705e8i 1.08145i 0.841201 + 0.540723i \(0.181849\pi\)
−0.841201 + 0.540723i \(0.818151\pi\)
\(140\) 0 0
\(141\) 5.78638e8 1.46396
\(142\) 2.06238e8 6.80579e8i 0.507243 1.67388i
\(143\) −2.50220e6 −0.00598381
\(144\) −2.06992e7 4.98104e7i −0.0481396 0.115843i
\(145\) 0 0
\(146\) 8.34602e7 2.75416e8i 0.183683 0.606146i
\(147\) −4.33327e8 −0.927998
\(148\) −3.57830e8 + 5.36196e8i −0.745813 + 1.11758i
\(149\) −2.52732e8 −0.512761 −0.256381 0.966576i \(-0.582530\pi\)
−0.256381 + 0.966576i \(0.582530\pi\)
\(150\) 0 0
\(151\) 1.14787e8i 0.220792i −0.993888 0.110396i \(-0.964788\pi\)
0.993888 0.110396i \(-0.0352119\pi\)
\(152\) 3.38829e8 2.78559e8i 0.634756 0.521846i
\(153\) 8.41419e7i 0.153549i
\(154\) 138327. 456475.i 0.000245937 0.000811585i
\(155\) 0 0
\(156\) 1.90048e8 2.84781e8i 0.320897 0.480853i
\(157\) 3.48763e8i 0.574026i −0.957927 0.287013i \(-0.907338\pi\)
0.957927 0.287013i \(-0.0926622\pi\)
\(158\) 9.46536e7 3.12354e8i 0.151883 0.501209i
\(159\) 1.17877e9i 1.84434i
\(160\) 0 0
\(161\) −9.58175e7 −0.142607
\(162\) 5.66086e8 + 1.71543e8i 0.821907 + 0.249065i
\(163\) 2.96216e8 0.419622 0.209811 0.977742i \(-0.432715\pi\)
0.209811 + 0.977742i \(0.432715\pi\)
\(164\) −6.34645e8 4.23529e8i −0.877314 0.585475i
\(165\) 0 0
\(166\) −7.79538e8 2.36226e8i −1.02661 0.311097i
\(167\) −1.56004e8 −0.200572 −0.100286 0.994959i \(-0.531976\pi\)
−0.100286 + 0.994959i \(0.531976\pi\)
\(168\) 4.14461e7 + 5.04137e7i 0.0520292 + 0.0632865i
\(169\) 5.04014e8 0.617868
\(170\) 0 0
\(171\) 8.81402e7i 0.103084i
\(172\) 4.73208e8 + 3.15795e8i 0.540677 + 0.360820i
\(173\) 4.66034e8i 0.520276i 0.965572 + 0.260138i \(0.0837680\pi\)
−0.965572 + 0.260138i \(0.916232\pi\)
\(174\) 1.00353e9 + 3.04102e8i 1.09479 + 0.331759i
\(175\) 0 0
\(176\) 8.57691e6 3.56421e6i 0.00893882 0.00371461i
\(177\) 4.83608e8i 0.492720i
\(178\) −4.10851e8 1.24502e8i −0.409265 0.124021i
\(179\) 1.44673e9i 1.40921i −0.709600 0.704605i \(-0.751124\pi\)
0.709600 0.704605i \(-0.248876\pi\)
\(180\) 0 0
\(181\) −5.80491e8 −0.540855 −0.270428 0.962740i \(-0.587165\pi\)
−0.270428 + 0.962740i \(0.587165\pi\)
\(182\) 1.72324e7 5.68663e7i 0.0157058 0.0518286i
\(183\) 1.53990e8 0.137305
\(184\) −1.18491e9 1.44129e9i −1.03375 1.25742i
\(185\) 0 0
\(186\) −1.51066e8 + 4.98512e8i −0.126216 + 0.416508i
\(187\) 1.44885e7 0.0118483
\(188\) 1.62660e9 + 1.08551e9i 1.30212 + 0.868966i
\(189\) 1.17654e8 0.0922058
\(190\) 0 0
\(191\) 2.29528e9i 1.72465i 0.506351 + 0.862327i \(0.330994\pi\)
−0.506351 + 0.862327i \(0.669006\pi\)
\(192\) −2.45786e8 + 1.24687e9i −0.180864 + 0.917519i
\(193\) 1.42541e9i 1.02733i −0.857991 0.513665i \(-0.828287\pi\)
0.857991 0.513665i \(-0.171713\pi\)
\(194\) −1.56958e8 + 5.17957e8i −0.110810 + 0.365668i
\(195\) 0 0
\(196\) −1.21812e9 8.12913e8i −0.825404 0.550833i
\(197\) 1.42075e9i 0.943305i −0.881785 0.471652i \(-0.843658\pi\)
0.881785 0.471652i \(-0.156342\pi\)
\(198\) 541261. 1.78614e6i 0.000352165 0.00116213i
\(199\) 1.90032e9i 1.21176i −0.795557 0.605878i \(-0.792822\pi\)
0.795557 0.605878i \(-0.207178\pi\)
\(200\) 0 0
\(201\) −1.54152e9 −0.944417
\(202\) −8.36729e8 2.53557e8i −0.502550 0.152289i
\(203\) 1.81987e8 0.107166
\(204\) −1.10044e9 + 1.64897e9i −0.635395 + 0.952118i
\(205\) 0 0
\(206\) −8.41185e7 2.54907e7i −0.0467114 0.0141551i
\(207\) −3.74925e8 −0.204203
\(208\) 1.06848e9 4.44019e8i 0.570841 0.237218i
\(209\) 1.51770e7 0.00795426
\(210\) 0 0
\(211\) 1.67947e9i 0.847311i −0.905823 0.423655i \(-0.860747\pi\)
0.905823 0.423655i \(-0.139253\pi\)
\(212\) −2.21135e9 + 3.31364e9i −1.09475 + 1.64044i
\(213\) 3.36677e9i 1.63567i
\(214\) 7.01590e8 + 2.12605e8i 0.334525 + 0.101372i
\(215\) 0 0
\(216\) 1.45495e9 + 1.76975e9i 0.668393 + 0.813011i
\(217\) 9.04039e7i 0.0407707i
\(218\) 2.06700e9 + 6.26370e8i 0.915197 + 0.277335i
\(219\) 1.36246e9i 0.592308i
\(220\) 0 0
\(221\) 1.80493e9 0.756644
\(222\) 8.85079e8 2.92073e9i 0.364393 1.20249i
\(223\) 1.10738e9 0.447795 0.223897 0.974613i \(-0.428122\pi\)
0.223897 + 0.974613i \(0.428122\pi\)
\(224\) 2.19339e7 + 2.19469e8i 0.00871210 + 0.0871730i
\(225\) 0 0
\(226\) −7.07991e8 + 2.33635e9i −0.271390 + 0.895579i
\(227\) 4.15603e9 1.56522 0.782610 0.622512i \(-0.213888\pi\)
0.782610 + 0.622512i \(0.213888\pi\)
\(228\) −1.15273e9 + 1.72732e9i −0.426567 + 0.639196i
\(229\) −1.34641e9 −0.489594 −0.244797 0.969574i \(-0.578721\pi\)
−0.244797 + 0.969574i \(0.578721\pi\)
\(230\) 0 0
\(231\) 2.25815e6i 0.000793057i
\(232\) 2.25052e9 + 2.73745e9i 0.776838 + 0.944920i
\(233\) 2.57794e8i 0.0874681i 0.999043 + 0.0437341i \(0.0139254\pi\)
−0.999043 + 0.0437341i \(0.986075\pi\)
\(234\) 6.74286e7 2.22512e8i 0.0224896 0.0742148i
\(235\) 0 0
\(236\) −9.07237e8 + 1.35946e9i −0.292464 + 0.438248i
\(237\) 1.54519e9i 0.489766i
\(238\) −9.97806e7 + 3.29273e8i −0.0310984 + 0.102624i
\(239\) 3.82549e8i 0.117245i 0.998280 + 0.0586227i \(0.0186709\pi\)
−0.998280 + 0.0586227i \(0.981329\pi\)
\(240\) 0 0
\(241\) −5.49743e9 −1.62964 −0.814820 0.579714i \(-0.803164\pi\)
−0.814820 + 0.579714i \(0.803164\pi\)
\(242\) −3.28204e9 9.94566e8i −0.956934 0.289983i
\(243\) 8.69420e8 0.249347
\(244\) 4.32879e8 + 2.88881e8i 0.122126 + 0.0815005i
\(245\) 0 0
\(246\) 3.45699e9 + 1.04758e9i 0.943970 + 0.286054i
\(247\) 1.89070e9 0.507966
\(248\) −1.35986e9 + 1.11797e9i −0.359490 + 0.295544i
\(249\) 3.85632e9 1.00317
\(250\) 0 0
\(251\) 7.22250e9i 1.81967i −0.414971 0.909835i \(-0.636208\pi\)
0.414971 0.909835i \(-0.363792\pi\)
\(252\) 3.68652e7 + 2.46019e7i 0.00914143 + 0.00610052i
\(253\) 6.45587e7i 0.0157570i
\(254\) 5.95514e9 + 1.80460e9i 1.43073 + 0.433558i
\(255\) 0 0
\(256\) −3.03002e9 + 3.04396e9i −0.705482 + 0.708728i
\(257\) 1.49317e9i 0.342277i 0.985247 + 0.171138i \(0.0547445\pi\)
−0.985247 + 0.171138i \(0.945256\pi\)
\(258\) −2.57762e9 7.81106e8i −0.581756 0.176291i
\(259\) 5.29667e8i 0.117707i
\(260\) 0 0
\(261\) 7.12099e8 0.153454
\(262\) 2.47000e9 8.15093e9i 0.524195 1.72982i
\(263\) −4.58536e9 −0.958409 −0.479205 0.877703i \(-0.659075\pi\)
−0.479205 + 0.877703i \(0.659075\pi\)
\(264\) −3.39671e7 + 2.79250e7i −0.00699266 + 0.00574881i
\(265\) 0 0
\(266\) −1.04522e8 + 3.44919e8i −0.0208776 + 0.0688955i
\(267\) 2.03245e9 0.399922
\(268\) −4.33334e9 2.89185e9i −0.840009 0.560579i
\(269\) −5.70969e9 −1.09044 −0.545222 0.838292i \(-0.683555\pi\)
−0.545222 + 0.838292i \(0.683555\pi\)
\(270\) 0 0
\(271\) 8.61657e9i 1.59756i −0.601623 0.798780i \(-0.705479\pi\)
0.601623 0.798780i \(-0.294521\pi\)
\(272\) −6.18684e9 + 2.57100e9i −1.13030 + 0.469706i
\(273\) 2.81313e8i 0.0506453i
\(274\) 2.37277e9 7.83008e9i 0.420973 1.38920i
\(275\) 0 0
\(276\) 7.34757e9 + 4.90339e9i 1.26621 + 0.845007i
\(277\) 5.74438e9i 0.975717i −0.872923 0.487858i \(-0.837778\pi\)
0.872923 0.487858i \(-0.162222\pi\)
\(278\) 1.87326e9 6.18168e9i 0.313630 1.03497i
\(279\) 3.53742e8i 0.0583807i
\(280\) 0 0
\(281\) 7.75176e9 1.24330 0.621648 0.783296i \(-0.286463\pi\)
0.621648 + 0.783296i \(0.286463\pi\)
\(282\) −8.86032e9 2.68497e9i −1.40105 0.424564i
\(283\) −3.56052e9 −0.555096 −0.277548 0.960712i \(-0.589522\pi\)
−0.277548 + 0.960712i \(0.589522\pi\)
\(284\) −6.31599e9 + 9.46431e9i −0.970886 + 1.45484i
\(285\) 0 0
\(286\) 3.83146e7 + 1.16106e7i 0.00572665 + 0.00173537i
\(287\) 6.26917e8 0.0924022
\(288\) 8.58251e7 + 8.58763e8i 0.0124751 + 0.124826i
\(289\) −3.47533e9 −0.498201
\(290\) 0 0
\(291\) 2.56229e9i 0.357320i
\(292\) −2.55595e9 + 3.83000e9i −0.351577 + 0.526826i
\(293\) 5.61859e9i 0.762355i −0.924502 0.381177i \(-0.875519\pi\)
0.924502 0.381177i \(-0.124481\pi\)
\(294\) 6.63527e9 + 2.01071e9i 0.888116 + 0.269129i
\(295\) 0 0
\(296\) 7.96726e9 6.55005e9i 1.03787 0.853253i
\(297\) 7.92712e7i 0.0101880i
\(298\) 3.86993e9 + 1.17272e9i 0.490725 + 0.148706i
\(299\) 8.04253e9i 1.00625i
\(300\) 0 0
\(301\) −4.67446e8 −0.0569463
\(302\) −5.32628e8 + 1.75766e9i −0.0640319 + 0.211303i
\(303\) 4.13924e9 0.491077
\(304\) −6.48084e9 + 2.69317e9i −0.758817 + 0.315333i
\(305\) 0 0
\(306\) −3.90432e8 + 1.28841e9i −0.0445307 + 0.146950i
\(307\) 1.17341e10 1.32099 0.660493 0.750832i \(-0.270347\pi\)
0.660493 + 0.750832i \(0.270347\pi\)
\(308\) −4.23623e6 + 6.34786e6i −0.000470736 + 0.000705382i
\(309\) 4.16128e8 0.0456450
\(310\) 0 0
\(311\) 8.30766e9i 0.888050i 0.896014 + 0.444025i \(0.146450\pi\)
−0.896014 + 0.444025i \(0.853550\pi\)
\(312\) −4.23152e9 + 3.47882e9i −0.446558 + 0.367124i
\(313\) 8.58561e9i 0.894528i −0.894402 0.447264i \(-0.852399\pi\)
0.894402 0.447264i \(-0.147601\pi\)
\(314\) −1.61831e9 + 5.34038e9i −0.166473 + 0.549356i
\(315\) 0 0
\(316\) −2.89874e9 + 4.34367e9i −0.290711 + 0.435621i
\(317\) 2.51112e9i 0.248674i 0.992240 + 0.124337i \(0.0396803\pi\)
−0.992240 + 0.124337i \(0.960320\pi\)
\(318\) 5.46969e9 1.80498e10i 0.534878 1.76508i
\(319\) 1.22617e8i 0.0118410i
\(320\) 0 0
\(321\) −3.47071e9 −0.326888
\(322\) 1.46719e9 + 4.44609e8i 0.136478 + 0.0413575i
\(323\) −1.09477e10 −1.00580
\(324\) −7.87214e9 5.25346e9i −0.714353 0.476722i
\(325\) 0 0
\(326\) −4.53577e9 1.37449e9i −0.401588 0.121694i
\(327\) −1.02253e10 −0.894303
\(328\) 7.75267e9 + 9.43009e9i 0.669817 + 0.814743i
\(329\) −1.60680e9 −0.137144
\(330\) 0 0
\(331\) 1.38910e10i 1.15724i −0.815599 0.578618i \(-0.803592\pi\)
0.815599 0.578618i \(-0.196408\pi\)
\(332\) 1.08405e10 + 7.23437e9i 0.892268 + 0.595454i
\(333\) 2.07254e9i 0.168549i
\(334\) 2.38879e9 + 7.23883e8i 0.191952 + 0.0581678i
\(335\) 0 0
\(336\) −4.00711e8 9.64270e8i −0.0314394 0.0756557i
\(337\) 1.74804e10i 1.35529i −0.735391 0.677643i \(-0.763001\pi\)
0.735391 0.677643i \(-0.236999\pi\)
\(338\) −7.71766e9 2.33871e9i −0.591315 0.179188i
\(339\) 1.15577e10i 0.875133i
\(340\) 0 0
\(341\) −6.09112e7 −0.00450484
\(342\) −4.08985e8 + 1.34964e9i −0.0298953 + 0.0986535i
\(343\) 2.41589e9 0.174542
\(344\) −5.78060e9 7.03133e9i −0.412799 0.502115i
\(345\) 0 0
\(346\) 2.16247e9 7.13609e9i 0.150885 0.497916i
\(347\) −4.08751e8 −0.0281930 −0.0140965 0.999901i \(-0.504487\pi\)
−0.0140965 + 0.999901i \(0.504487\pi\)
\(348\) −1.39553e10 9.31306e9i −0.951530 0.635002i
\(349\) 1.52539e10 1.02820 0.514102 0.857729i \(-0.328125\pi\)
0.514102 + 0.857729i \(0.328125\pi\)
\(350\) 0 0
\(351\) 9.87536e9i 0.650616i
\(352\) −1.47871e8 + 1.47783e7i −0.00963193 + 0.000962619i
\(353\) 2.36311e9i 0.152190i −0.997101 0.0760950i \(-0.975755\pi\)
0.997101 0.0760950i \(-0.0242452\pi\)
\(354\) 2.24402e9 7.40518e9i 0.142894 0.471544i
\(355\) 0 0
\(356\) 5.71340e9 + 3.81283e9i 0.355709 + 0.237382i
\(357\) 1.62889e9i 0.100281i
\(358\) −6.71306e9 + 2.21529e10i −0.408685 + 1.34865i
\(359\) 1.95665e10i 1.17797i 0.808143 + 0.588987i \(0.200473\pi\)
−0.808143 + 0.588987i \(0.799527\pi\)
\(360\) 0 0
\(361\) 5.51562e9 0.324762
\(362\) 8.88870e9 + 2.69357e9i 0.517611 + 0.156854i
\(363\) 1.62360e10 0.935088
\(364\) −5.27737e8 + 7.90797e8i −0.0300616 + 0.0450463i
\(365\) 0 0
\(366\) −2.35795e9 7.14537e8i −0.131404 0.0398199i
\(367\) −2.40655e10 −1.32657 −0.663285 0.748367i \(-0.730838\pi\)
−0.663285 + 0.748367i \(0.730838\pi\)
\(368\) 1.14560e10 + 2.75677e10i 0.624659 + 1.50318i
\(369\) 2.45307e9 0.132313
\(370\) 0 0
\(371\) 3.27329e9i 0.172778i
\(372\) 4.62635e9 6.93243e9i 0.241583 0.362004i
\(373\) 1.70488e10i 0.880760i 0.897811 + 0.440380i \(0.145156\pi\)
−0.897811 + 0.440380i \(0.854844\pi\)
\(374\) −2.21853e8 6.72289e7i −0.0113391 0.00343613i
\(375\) 0 0
\(376\) −1.98702e10 2.41695e10i −0.994148 1.20925i
\(377\) 1.52753e10i 0.756176i
\(378\) −1.80156e9 5.45932e8i −0.0882431 0.0267406i
\(379\) 1.60429e10i 0.777545i 0.921334 + 0.388772i \(0.127101\pi\)
−0.921334 + 0.388772i \(0.872899\pi\)
\(380\) 0 0
\(381\) −2.94596e10 −1.39806
\(382\) 1.06505e10 3.51462e10i 0.500167 1.65054i
\(383\) 1.23891e10 0.575765 0.287883 0.957666i \(-0.407049\pi\)
0.287883 + 0.957666i \(0.407049\pi\)
\(384\) 9.54923e9 1.79520e10i 0.439181 0.825635i
\(385\) 0 0
\(386\) −6.61413e9 + 2.18264e10i −0.297936 + 0.983180i
\(387\) −1.82907e9 −0.0815430
\(388\) 4.80681e9 7.20284e9i 0.212095 0.317817i
\(389\) 1.27527e10 0.556935 0.278467 0.960446i \(-0.410174\pi\)
0.278467 + 0.960446i \(0.410174\pi\)
\(390\) 0 0
\(391\) 4.65686e10i 1.99245i
\(392\) 1.48803e10 + 1.80999e10i 0.630184 + 0.766535i
\(393\) 4.03221e10i 1.69033i
\(394\) −6.59250e9 + 2.17550e10i −0.273568 + 0.902765i
\(395\) 0 0
\(396\) −1.65760e7 + 2.48386e7i −0.000674060 + 0.00101006i
\(397\) 1.95226e10i 0.785914i 0.919557 + 0.392957i \(0.128548\pi\)
−0.919557 + 0.392957i \(0.871452\pi\)
\(398\) −8.81781e9 + 2.90985e10i −0.351422 + 1.15968i
\(399\) 1.70629e9i 0.0673227i
\(400\) 0 0
\(401\) 2.44896e10 0.947119 0.473559 0.880762i \(-0.342969\pi\)
0.473559 + 0.880762i \(0.342969\pi\)
\(402\) 2.36043e10 + 7.15288e9i 0.903830 + 0.273891i
\(403\) −7.58813e9 −0.287683
\(404\) 1.16358e10 + 7.76512e9i 0.436787 + 0.291489i
\(405\) 0 0
\(406\) −2.78666e9 8.44450e8i −0.102560 0.0310792i
\(407\) 3.56873e8 0.0130058
\(408\) 2.45017e10 2.01434e10i 0.884212 0.726929i
\(409\) −1.79748e10 −0.642350 −0.321175 0.947020i \(-0.604078\pi\)
−0.321175 + 0.947020i \(0.604078\pi\)
\(410\) 0 0
\(411\) 3.87348e10i 1.35748i
\(412\) 1.16977e9 + 7.80647e8i 0.0405988 + 0.0270935i
\(413\) 1.34291e9i 0.0461580i
\(414\) 5.74099e9 + 1.73971e9i 0.195427 + 0.0592210i
\(415\) 0 0
\(416\) −1.84214e10 + 1.84104e9i −0.615104 + 0.0614737i
\(417\) 3.05803e10i 1.01134i
\(418\) −2.32395e8 7.04236e7i −0.00761241 0.00230682i
\(419\) 3.49871e10i 1.13515i 0.823323 + 0.567573i \(0.192117\pi\)
−0.823323 + 0.567573i \(0.807883\pi\)
\(420\) 0 0
\(421\) 1.17473e10 0.373947 0.186973 0.982365i \(-0.440132\pi\)
0.186973 + 0.982365i \(0.440132\pi\)
\(422\) −7.79302e9 + 2.57167e10i −0.245729 + 0.810896i
\(423\) −6.28724e9 −0.196381
\(424\) 4.92368e10 4.04786e10i 1.52344 1.25246i
\(425\) 0 0
\(426\) 1.56224e10 5.15533e10i 0.474361 1.56537i
\(427\) −4.27608e8 −0.0128628
\(428\) −9.75649e9 6.51098e9i −0.290749 0.194031i
\(429\) −1.89540e8 −0.00559591
\(430\) 0 0
\(431\) 4.11908e10i 1.19369i 0.802357 + 0.596845i \(0.203579\pi\)
−0.802357 + 0.596845i \(0.796421\pi\)
\(432\) −1.40668e10 3.38502e10i −0.403887 0.971911i
\(433\) 1.38879e10i 0.395079i −0.980295 0.197540i \(-0.936705\pi\)
0.980295 0.197540i \(-0.0632951\pi\)
\(434\) 4.19488e8 1.38430e9i 0.0118239 0.0390185i
\(435\) 0 0
\(436\) −2.87442e10 1.91824e10i −0.795435 0.530833i
\(437\) 4.87815e10i 1.33761i
\(438\) 6.32204e9 2.08625e10i 0.171775 0.566853i
\(439\) 2.26777e10i 0.610577i −0.952260 0.305289i \(-0.901247\pi\)
0.952260 0.305289i \(-0.0987530\pi\)
\(440\) 0 0
\(441\) 4.70836e9 0.124485
\(442\) −2.76378e10 8.37517e9i −0.724126 0.219434i
\(443\) 4.08182e10 1.05984 0.529919 0.848049i \(-0.322222\pi\)
0.529919 + 0.848049i \(0.322222\pi\)
\(444\) −2.71053e10 + 4.06164e10i −0.697466 + 1.04513i
\(445\) 0 0
\(446\) −1.69567e10 5.13844e9i −0.428550 0.129865i
\(447\) −1.91442e10 −0.479521
\(448\) 6.82514e8 3.46237e9i 0.0169434 0.0859532i
\(449\) −4.15880e10 −1.02325 −0.511626 0.859208i \(-0.670957\pi\)
−0.511626 + 0.859208i \(0.670957\pi\)
\(450\) 0 0
\(451\) 4.22396e8i 0.0102097i
\(452\) 2.16821e10 3.24898e10i 0.519454 0.778384i
\(453\) 8.69500e9i 0.206479i
\(454\) −6.36387e10 1.92847e10i −1.49795 0.453929i
\(455\) 0 0
\(456\) 2.56660e10 2.11006e10i 0.593608 0.488017i
\(457\) 7.96321e10i 1.82567i −0.408324 0.912837i \(-0.633887\pi\)
0.408324 0.912837i \(-0.366113\pi\)
\(458\) 2.06168e10 + 6.24756e9i 0.468553 + 0.141987i
\(459\) 5.71813e10i 1.28826i
\(460\) 0 0
\(461\) −2.32904e10 −0.515671 −0.257836 0.966189i \(-0.583009\pi\)
−0.257836 + 0.966189i \(0.583009\pi\)
\(462\) 1.04782e7 3.45776e7i 0.000229995 0.000758974i
\(463\) −3.77433e10 −0.821327 −0.410664 0.911787i \(-0.634703\pi\)
−0.410664 + 0.911787i \(0.634703\pi\)
\(464\) −2.17585e10 5.23597e10i −0.469416 1.12960i
\(465\) 0 0
\(466\) 1.19621e9 3.94745e9i 0.0253666 0.0837091i
\(467\) −3.59265e10 −0.755349 −0.377674 0.925938i \(-0.623276\pi\)
−0.377674 + 0.925938i \(0.623276\pi\)
\(468\) −2.06499e9 + 3.09431e9i −0.0430461 + 0.0645031i
\(469\) 4.28058e9 0.0884731
\(470\) 0 0
\(471\) 2.64185e10i 0.536814i
\(472\) 2.02001e10 1.66069e10i 0.406991 0.334596i
\(473\) 3.14950e8i 0.00629212i
\(474\) 7.16994e9 2.36605e10i 0.142037 0.468718i
\(475\) 0 0
\(476\) 3.05576e9 4.57895e9i 0.0595238 0.0891945i
\(477\) 1.28081e10i 0.247406i
\(478\) 1.77509e9 5.85774e9i 0.0340024 0.112207i
\(479\) 4.40663e10i 0.837076i 0.908199 + 0.418538i \(0.137457\pi\)
−0.908199 + 0.418538i \(0.862543\pi\)
\(480\) 0 0
\(481\) 4.44581e10 0.830559
\(482\) 8.41787e10 + 2.55090e10i 1.55960 + 0.472612i
\(483\) −7.25810e9 −0.133363
\(484\) 4.56408e10 + 3.04584e10i 0.831710 + 0.555041i
\(485\) 0 0
\(486\) −1.33129e10 4.03425e9i −0.238631 0.0723132i
\(487\) −3.99322e10 −0.709916 −0.354958 0.934882i \(-0.615505\pi\)
−0.354958 + 0.934882i \(0.615505\pi\)
\(488\) −5.28795e9 6.43209e9i −0.0932413 0.113416i
\(489\) 2.24381e10 0.392420
\(490\) 0 0
\(491\) 7.96737e10i 1.37085i −0.728145 0.685423i \(-0.759617\pi\)
0.728145 0.685423i \(-0.240383\pi\)
\(492\) −4.80738e10 3.20820e10i −0.820443 0.547521i
\(493\) 8.84483e10i 1.49728i
\(494\) −2.89511e10 8.77315e9i −0.486136 0.147315i
\(495\) 0 0
\(496\) 2.60102e10 1.08088e10i 0.429751 0.178587i
\(497\) 9.34907e9i 0.153230i
\(498\) −5.90494e10 1.78939e10i −0.960060 0.290930i
\(499\) 1.56191e10i 0.251915i 0.992036 + 0.125957i \(0.0402002\pi\)
−0.992036 + 0.125957i \(0.959800\pi\)
\(500\) 0 0
\(501\) −1.18172e10 −0.187570
\(502\) −3.35136e10 + 1.10594e11i −0.527722 + 1.74147i
\(503\) 6.13884e10 0.958990 0.479495 0.877544i \(-0.340820\pi\)
0.479495 + 0.877544i \(0.340820\pi\)
\(504\) −4.50337e8 5.47775e8i −0.00697935 0.00848945i
\(505\) 0 0
\(506\) −2.99563e8 + 9.88548e8i −0.00456968 + 0.0150798i
\(507\) 3.81787e10 0.577815
\(508\) −8.28136e10 5.52656e10i −1.24350 0.829850i
\(509\) 1.27845e10 0.190464 0.0952322 0.995455i \(-0.469641\pi\)
0.0952322 + 0.995455i \(0.469641\pi\)
\(510\) 0 0
\(511\) 3.78337e9i 0.0554875i
\(512\) 6.05213e10 3.25506e10i 0.880701 0.473673i
\(513\) 5.98985e10i 0.864861i
\(514\) 6.92856e9 2.28640e10i 0.0992637 0.327567i
\(515\) 0 0
\(516\) 3.58451e10 + 2.39212e10i 0.505628 + 0.337430i
\(517\) 1.08261e9i 0.0151534i
\(518\) −2.45774e9 + 8.11047e9i −0.0341364 + 0.112649i
\(519\) 3.53017e10i 0.486549i
\(520\) 0 0
\(521\) 2.70385e10 0.366971 0.183486 0.983022i \(-0.441262\pi\)
0.183486 + 0.983022i \(0.441262\pi\)
\(522\) −1.09039e10 3.30425e9i −0.146859 0.0445032i
\(523\) −1.26822e11 −1.69508 −0.847538 0.530734i \(-0.821916\pi\)
−0.847538 + 0.530734i \(0.821916\pi\)
\(524\) −7.56433e10 + 1.13349e11i −1.00333 + 1.50346i
\(525\) 0 0
\(526\) 7.02128e10 + 2.12768e10i 0.917220 + 0.277948i
\(527\) 4.39375e10 0.569630
\(528\) 6.49694e8 2.69986e8i 0.00835936 0.00347381i
\(529\) 1.29193e11 1.64974
\(530\) 0 0
\(531\) 5.25468e9i 0.0660950i
\(532\) 3.20096e9 4.79654e9i 0.0399608 0.0598799i
\(533\) 5.26208e10i 0.652002i
\(534\) −3.11217e10 9.43090e9i −0.382735 0.115981i
\(535\) 0 0
\(536\) 5.29351e10 + 6.43885e10i 0.641335 + 0.780098i
\(537\) 1.09589e11i 1.31786i
\(538\) 8.74289e10 + 2.64939e10i 1.04358 + 0.316240i
\(539\) 8.10738e8i 0.00960562i
\(540\) 0 0
\(541\) 1.86619e10 0.217854 0.108927 0.994050i \(-0.465259\pi\)
0.108927 + 0.994050i \(0.465259\pi\)
\(542\) −3.99823e10 + 1.31940e11i −0.463308 + 1.52890i
\(543\) −4.39717e10 −0.505795
\(544\) 1.06665e11 1.06602e10i 1.21794 0.121722i
\(545\) 0 0
\(546\) 1.30534e9 4.30757e9i 0.0146877 0.0484688i
\(547\) −2.19453e9 −0.0245128 −0.0122564 0.999925i \(-0.503901\pi\)
−0.0122564 + 0.999925i \(0.503901\pi\)
\(548\) −7.26656e10 + 1.08887e11i −0.805762 + 1.20741i
\(549\) −1.67319e9 −0.0184186
\(550\) 0 0
\(551\) 9.26513e10i 1.00518i
\(552\) −8.97562e10 1.09176e11i −0.966737 1.17591i
\(553\) 4.29078e9i 0.0458813i
\(554\) −2.66548e10 + 8.79601e10i −0.282968 + 0.933784i
\(555\) 0 0
\(556\) −5.73680e10 + 8.59640e10i −0.600303 + 0.899534i
\(557\) 1.97889e10i 0.205590i 0.994703 + 0.102795i \(0.0327786\pi\)
−0.994703 + 0.102795i \(0.967221\pi\)
\(558\) 1.64142e9 5.41663e9i 0.0169310 0.0558717i
\(559\) 3.92355e10i 0.401820i
\(560\) 0 0
\(561\) 1.09749e9 0.0110803
\(562\) −1.18698e11 3.59694e10i −1.18986 0.360569i
\(563\) 3.05862e10 0.304433 0.152216 0.988347i \(-0.451359\pi\)
0.152216 + 0.988347i \(0.451359\pi\)
\(564\) 1.23214e11 + 8.22266e10i 1.21771 + 0.812636i
\(565\) 0 0
\(566\) 5.45200e10 + 1.65214e10i 0.531240 + 0.160983i
\(567\) 7.77629e9 0.0752385
\(568\) 1.40629e11 1.15614e11i 1.35108 1.11075i
\(569\) −1.99299e11 −1.90132 −0.950661 0.310230i \(-0.899594\pi\)
−0.950661 + 0.310230i \(0.899594\pi\)
\(570\) 0 0
\(571\) 8.63094e10i 0.811921i 0.913891 + 0.405960i \(0.133063\pi\)
−0.913891 + 0.405960i \(0.866937\pi\)
\(572\) −5.32813e8 3.55572e8i −0.00497727 0.00332157i
\(573\) 1.73866e11i 1.61285i
\(574\) −9.59959e9 2.90900e9i −0.0884311 0.0267976i
\(575\) 0 0
\(576\) 2.67061e9 1.35479e10i 0.0242617 0.123079i
\(577\) 8.87088e10i 0.800320i 0.916445 + 0.400160i \(0.131045\pi\)
−0.916445 + 0.400160i \(0.868955\pi\)
\(578\) 5.32156e10 + 1.61261e10i 0.476791 + 0.144483i
\(579\) 1.07974e11i 0.960734i
\(580\) 0 0
\(581\) −1.07085e10 −0.0939772
\(582\) −1.18895e10 + 3.92348e10i −0.103626 + 0.341963i
\(583\) 2.20543e9 0.0190906
\(584\) 5.69095e10 4.67864e10i 0.489252 0.402225i
\(585\) 0 0
\(586\) −2.60712e10 + 8.60340e10i −0.221091 + 0.729591i
\(587\) 1.67947e11 1.41456 0.707278 0.706936i \(-0.249923\pi\)
0.707278 + 0.706936i \(0.249923\pi\)
\(588\) −9.22718e10 6.15775e10i −0.771898 0.515125i
\(589\) 4.60254e10 0.382416
\(590\) 0 0
\(591\) 1.07620e11i 0.882155i
\(592\) −1.52391e11 + 6.33275e10i −1.24072 + 0.515591i
\(593\) 1.04027e11i 0.841252i −0.907234 0.420626i \(-0.861810\pi\)
0.907234 0.420626i \(-0.138190\pi\)
\(594\) 3.67831e8 1.21383e9i 0.00295463 0.00975017i
\(595\) 0 0
\(596\) −5.38162e10 3.59142e10i −0.426509 0.284630i
\(597\) 1.43948e11i 1.13320i
\(598\) −3.73186e10 + 1.23150e11i −0.291824 + 0.963009i
\(599\) 1.28089e11i 0.994960i −0.867475 0.497480i \(-0.834259\pi\)
0.867475 0.497480i \(-0.165741\pi\)
\(600\) 0 0
\(601\) −6.55306e10 −0.502281 −0.251140 0.967951i \(-0.580806\pi\)
−0.251140 + 0.967951i \(0.580806\pi\)
\(602\) 7.15771e9 + 2.16902e9i 0.0544989 + 0.0165150i
\(603\) 1.67495e10 0.126687
\(604\) 1.63116e10 2.44424e10i 0.122560 0.183652i
\(605\) 0 0
\(606\) −6.33816e10 1.92067e10i −0.469973 0.142417i
\(607\) 2.09475e11 1.54304 0.771521 0.636204i \(-0.219496\pi\)
0.771521 + 0.636204i \(0.219496\pi\)
\(608\) 1.11734e11 1.11667e10i 0.817655 0.0817168i
\(609\) 1.37854e10 0.100219
\(610\) 0 0
\(611\) 1.34868e11i 0.967707i
\(612\) 1.19569e10 1.79170e10i 0.0852339 0.127720i
\(613\) 1.26502e11i 0.895894i 0.894060 + 0.447947i \(0.147845\pi\)
−0.894060 + 0.447947i \(0.852155\pi\)
\(614\) −1.79678e11 5.44483e10i −1.26421 0.383099i
\(615\) 0 0
\(616\) 9.43219e7 7.75440e7i 0.000655073 0.000538549i
\(617\) 2.25072e11i 1.55303i 0.630096 + 0.776517i \(0.283016\pi\)
−0.630096 + 0.776517i \(0.716984\pi\)
\(618\) −6.37191e9 1.93090e9i −0.0436833 0.0132375i
\(619\) 6.03060e10i 0.410769i 0.978681 + 0.205385i \(0.0658445\pi\)
−0.978681 + 0.205385i \(0.934155\pi\)
\(620\) 0 0
\(621\) −2.54792e11 −1.71325
\(622\) 3.85489e10 1.27210e11i 0.257543 0.849884i
\(623\) −5.64383e9 −0.0374647
\(624\) 8.09369e10 3.36340e10i 0.533836 0.221840i
\(625\) 0 0
\(626\) −3.98386e10 + 1.31466e11i −0.259422 + 0.856084i
\(627\) 1.14964e9 0.00743863
\(628\) 4.95605e10 7.42647e10i 0.318638 0.477468i
\(629\) −2.57426e11 −1.64456
\(630\) 0 0
\(631\) 1.40158e11i 0.884097i −0.896991 0.442049i \(-0.854252\pi\)
0.896991 0.442049i \(-0.145748\pi\)
\(632\) 6.45420e10 5.30613e10i 0.404552 0.332590i
\(633\) 1.27219e11i 0.792384i
\(634\) 1.16520e10 3.84512e10i 0.0721179 0.237987i
\(635\) 0 0
\(636\) −1.67508e11 + 2.51005e11i −1.02378 + 1.53410i
\(637\) 1.00999e11i 0.613424i
\(638\) 5.68963e8 1.87756e9i 0.00343401 0.0113321i
\(639\) 3.65820e10i 0.219414i
\(640\) 0 0
\(641\) −1.84845e11 −1.09490 −0.547452 0.836837i \(-0.684402\pi\)
−0.547452 + 0.836837i \(0.684402\pi\)
\(642\) 5.31449e10 + 1.61047e10i 0.312839 + 0.0948007i
\(643\) 2.62671e11 1.53662 0.768312 0.640076i \(-0.221097\pi\)
0.768312 + 0.640076i \(0.221097\pi\)
\(644\) −2.04032e10 1.36160e10i −0.118619 0.0791602i
\(645\) 0 0
\(646\) 1.67636e11 + 5.07992e10i 0.962578 + 0.291693i
\(647\) 2.14765e11 1.22560 0.612798 0.790240i \(-0.290044\pi\)
0.612798 + 0.790240i \(0.290044\pi\)
\(648\) 9.61643e10 + 1.16971e11i 0.545398 + 0.663404i
\(649\) 9.04810e8 0.00510010
\(650\) 0 0
\(651\) 6.84802e9i 0.0381277i
\(652\) 6.30755e10 + 4.20934e10i 0.349036 + 0.232929i
\(653\) 2.41679e11i 1.32919i 0.747206 + 0.664593i \(0.231395\pi\)
−0.747206 + 0.664593i \(0.768605\pi\)
\(654\) 1.56574e11 + 4.74470e10i 0.855869 + 0.259357i
\(655\) 0 0
\(656\) −7.49547e10 1.80371e11i −0.404747 0.973982i
\(657\) 1.48040e10i 0.0794541i
\(658\) 2.46039e10 + 7.45579e9i 0.131250 + 0.0397732i
\(659\) 1.45001e11i 0.768828i 0.923161 + 0.384414i \(0.125597\pi\)
−0.923161 + 0.384414i \(0.874403\pi\)
\(660\) 0 0
\(661\) 9.94275e10 0.520836 0.260418 0.965496i \(-0.416140\pi\)
0.260418 + 0.965496i \(0.416140\pi\)
\(662\) −6.44566e10 + 2.12705e11i −0.335610 + 1.10750i
\(663\) 1.36722e11 0.707595
\(664\) −1.32425e11 1.61077e11i −0.681234 0.828630i
\(665\) 0 0
\(666\) −9.61691e9 + 3.17355e10i −0.0488808 + 0.161305i
\(667\) −3.94114e11 −1.99121
\(668\) −3.32191e10 2.21687e10i −0.166833 0.111336i
\(669\) 8.38835e10 0.418767
\(670\) 0 0
\(671\) 2.88108e8i 0.00142123i
\(672\) 1.66147e9 + 1.66246e10i 0.00814734 + 0.0815220i
\(673\) 2.01911e10i 0.0984239i 0.998788 + 0.0492120i \(0.0156710\pi\)
−0.998788 + 0.0492120i \(0.984329\pi\)
\(674\) −8.11117e10 + 2.67666e11i −0.393047 + 1.29704i
\(675\) 0 0
\(676\) 1.07324e11 + 7.16223e10i 0.513936 + 0.342974i
\(677\) 3.25587e10i 0.154993i −0.996993 0.0774966i \(-0.975307\pi\)
0.996993 0.0774966i \(-0.0246927\pi\)
\(678\) −5.36298e10 + 1.76976e11i −0.253797 + 0.837523i
\(679\) 7.11514e9i 0.0334737i
\(680\) 0 0
\(681\) 3.14816e11 1.46375
\(682\) 9.32695e8 + 2.82638e8i 0.00431124 + 0.00130645i
\(683\) 2.46509e10 0.113279 0.0566396 0.998395i \(-0.481961\pi\)
0.0566396 + 0.998395i \(0.481961\pi\)
\(684\) 1.25251e10 1.87684e10i 0.0572210 0.0857438i
\(685\) 0 0
\(686\) −3.69930e10 1.12101e10i −0.167041 0.0506190i
\(687\) −1.01990e11 −0.457856
\(688\) 5.58882e10 + 1.34489e11i 0.249440 + 0.600252i
\(689\) 2.74746e11 1.21914
\(690\) 0 0
\(691\) 3.02518e11i 1.32690i 0.748220 + 0.663451i \(0.230909\pi\)
−0.748220 + 0.663451i \(0.769091\pi\)
\(692\) −6.62252e10 + 9.92363e10i −0.288801 + 0.432759i
\(693\) 2.45361e7i 0.000106383i
\(694\) 6.25894e9 + 1.89667e9i 0.0269813 + 0.00817624i
\(695\) 0 0
\(696\) 1.70475e11 + 2.07360e11i 0.726480 + 0.883665i
\(697\) 3.04690e11i 1.29100i
\(698\) −2.33573e11 7.07805e10i −0.984015 0.298189i
\(699\) 1.95277e10i 0.0817980i
\(700\) 0 0
\(701\) −1.07716e11 −0.446076 −0.223038 0.974810i \(-0.571597\pi\)
−0.223038 + 0.974810i \(0.571597\pi\)
\(702\) 4.58233e10 1.51215e11i 0.188685 0.622655i
\(703\) −2.69658e11 −1.10406
\(704\) 2.33284e9 + 4.59856e8i 0.00949715 + 0.00187211i
\(705\) 0 0
\(706\) −1.09652e10 + 3.61849e10i −0.0441366 + 0.145649i
\(707\) −1.14941e10 −0.0460041
\(708\) −6.87225e10 + 1.02978e11i −0.273505 + 0.409839i
\(709\) 2.10543e10 0.0833213 0.0416606 0.999132i \(-0.486735\pi\)
0.0416606 + 0.999132i \(0.486735\pi\)
\(710\) 0 0
\(711\) 1.67894e10i 0.0656988i
\(712\) −6.97936e10 8.48946e10i −0.271579 0.330339i
\(713\) 1.95780e11i 0.757547i
\(714\) −7.55830e9 + 2.49421e10i −0.0290825 + 0.0959712i
\(715\) 0 0
\(716\) 2.05586e11 3.08064e11i 0.782242 1.17216i
\(717\) 2.89778e10i 0.109645i
\(718\) 9.07918e10 2.99610e11i 0.341624 1.12735i
\(719\) 1.84186e11i 0.689193i −0.938751 0.344597i \(-0.888016\pi\)
0.938751 0.344597i \(-0.111984\pi\)
\(720\) 0 0
\(721\) −1.15553e9 −0.00427602
\(722\) −8.44573e10 2.55934e10i −0.310805 0.0941843i
\(723\) −4.16426e11 −1.52400
\(724\) −1.23608e11 8.24900e10i −0.449877 0.300225i
\(725\) 0 0
\(726\) −2.48612e11 7.53376e10i −0.894901 0.271185i
\(727\) −1.34820e11 −0.482632 −0.241316 0.970447i \(-0.577579\pi\)
−0.241316 + 0.970447i \(0.577579\pi\)
\(728\) 1.17503e10 9.66019e9i 0.0418336 0.0343922i
\(729\) 3.08413e11 1.09200
\(730\) 0 0
\(731\) 2.27185e11i 0.795628i
\(732\) 3.27902e10 + 2.18825e10i 0.114209 + 0.0762172i
\(733\) 5.46288e10i 0.189237i −0.995514 0.0946184i \(-0.969837\pi\)
0.995514 0.0946184i \(-0.0301631\pi\)
\(734\) 3.68500e11 + 1.11668e11i 1.26956 + 0.384719i
\(735\) 0 0
\(736\) −4.75002e10 4.75285e11i −0.161877 1.61973i
\(737\) 2.88411e9i 0.00977558i
\(738\) −3.75623e10 1.13826e10i −0.126627 0.0383722i
\(739\) 2.87010e11i 0.962320i 0.876633 + 0.481160i \(0.159784\pi\)
−0.876633 + 0.481160i \(0.840216\pi\)
\(740\) 0 0
\(741\) 1.43219e11 0.475037
\(742\) −1.51886e10 + 5.01218e10i −0.0501074 + 0.165353i
\(743\) −1.72722e11 −0.566750 −0.283375 0.959009i \(-0.591454\pi\)
−0.283375 + 0.959009i \(0.591454\pi\)
\(744\) −1.03008e11 + 8.46850e10i −0.336186 + 0.276385i
\(745\) 0 0
\(746\) 7.91090e10 2.61057e11i 0.255429 0.842908i
\(747\) −4.19012e10 −0.134569
\(748\) 3.08515e9 + 2.05887e9i 0.00985529 + 0.00657692i
\(749\) 9.63769e9 0.0306228
\(750\) 0 0
\(751\) 1.75776e11i 0.552586i 0.961073 + 0.276293i \(0.0891060\pi\)
−0.961073 + 0.276293i \(0.910894\pi\)
\(752\) 1.92110e11 + 4.62293e11i 0.600729 + 1.44559i
\(753\) 5.47098e11i 1.70171i
\(754\) 7.08796e10 2.33901e11i 0.219299 0.723679i
\(755\) 0 0
\(756\) 2.50529e10 + 1.67190e10i 0.0766957 + 0.0511828i
\(757\) 2.40268e11i 0.731665i −0.930681 0.365833i \(-0.880784\pi\)
0.930681 0.365833i \(-0.119216\pi\)
\(758\) 7.44415e10 2.45655e11i 0.225496 0.744129i
\(759\) 4.89027e9i 0.0147355i
\(760\) 0 0
\(761\) 5.00466e11 1.49223 0.746115 0.665817i \(-0.231917\pi\)
0.746115 + 0.665817i \(0.231917\pi\)
\(762\) 4.51097e11 + 1.36697e11i 1.33798 + 0.405453i
\(763\) 2.83942e10 0.0837784
\(764\) −3.26168e11 + 4.88752e11i −0.957344 + 1.43455i
\(765\) 0 0
\(766\) −1.89707e11 5.74875e10i −0.551021 0.166978i
\(767\) 1.12718e11 0.325697
\(768\) −2.29522e11 + 2.30578e11i −0.659749 + 0.662785i
\(769\) −1.02605e11 −0.293402 −0.146701 0.989181i \(-0.546865\pi\)
−0.146701 + 0.989181i \(0.546865\pi\)
\(770\) 0 0
\(771\) 1.13107e11i 0.320089i
\(772\) 2.02556e11 3.03523e11i 0.570264 0.854522i
\(773\) 5.93175e11i 1.66136i 0.556747 + 0.830682i \(0.312049\pi\)
−0.556747 + 0.830682i \(0.687951\pi\)
\(774\) 2.80074e10 + 8.48718e9i 0.0780386 + 0.0236483i
\(775\) 0 0
\(776\) −1.07026e11 + 8.79883e10i −0.295150 + 0.242649i
\(777\) 4.01219e10i 0.110077i
\(778\) −1.95274e11 5.91747e10i −0.533000 0.161517i
\(779\) 3.19169e11i 0.866704i
\(780\) 0 0
\(781\) 6.29910e9 0.0169307
\(782\) 2.16086e11 7.13077e11i 0.577829 1.90682i
\(783\) 4.83929e11 1.28746
\(784\) −1.43866e11 3.46200e11i −0.380798 0.916352i
\(785\) 0 0
\(786\) 1.87101e11 6.17427e11i 0.490214 1.61769i
\(787\) −1.93252e11 −0.503761 −0.251880 0.967758i \(-0.581049\pi\)
−0.251880 + 0.967758i \(0.581049\pi\)
\(788\) 2.01894e11 3.02531e11i 0.523622 0.784630i
\(789\) −3.47338e11 −0.896280
\(790\) 0 0
\(791\) 3.20942e10i 0.0819825i
\(792\) 3.69073e8 3.03422e8i 0.000938018 0.000771164i
\(793\) 3.58917e10i 0.0907613i
\(794\) 9.05879e10 2.98937e11i 0.227923 0.752139i
\(795\) 0 0
\(796\) 2.70043e11 4.04651e11i 0.672638 1.00793i
\(797\) 4.34328e11i 1.07643i 0.842809 + 0.538213i \(0.180901\pi\)
−0.842809 + 0.538213i \(0.819099\pi\)
\(798\) −7.91746e9 + 2.61274e10i −0.0195243 + 0.0644294i
\(799\) 7.80925e11i 1.91612i
\(800\) 0 0
\(801\) −2.20838e10 −0.0536468
\(802\) −3.74994e11 1.13636e11i −0.906415 0.274674i
\(803\) 2.54911e9 0.00613093
\(804\) −3.28247e11 2.19055e11i −0.785555 0.524239i
\(805\) 0 0
\(806\) 1.16192e11 + 3.52101e10i 0.275320 + 0.0834310i
\(807\) −4.32504e11 −1.01976
\(808\) −1.42140e11 1.72894e11i −0.333481 0.405635i
\(809\) −7.57515e11 −1.76847 −0.884234 0.467044i \(-0.845319\pi\)
−0.884234 + 0.467044i \(0.845319\pi\)
\(810\) 0 0
\(811\) 1.15001e11i 0.265838i −0.991127 0.132919i \(-0.957565\pi\)
0.991127 0.132919i \(-0.0424350\pi\)
\(812\) 3.87520e10 + 2.58611e10i 0.0891394 + 0.0594870i
\(813\) 6.52698e11i 1.49400i
\(814\) −5.46457e9 1.65595e9i −0.0124468 0.00377180i
\(815\) 0 0
\(816\) −4.68649e11 + 1.94751e11i −1.05703 + 0.439258i
\(817\) 2.37981e11i 0.534138i
\(818\) 2.75238e11 + 8.34061e10i 0.614744 + 0.186288i
\(819\) 3.05663e9i 0.00679373i
\(820\) 0 0
\(821\) −2.18337e11 −0.480568 −0.240284 0.970703i \(-0.577240\pi\)
−0.240284 + 0.970703i \(0.577240\pi\)
\(822\) 1.79736e11 5.93122e11i 0.393683 1.29914i
\(823\) −2.44330e11 −0.532572 −0.266286 0.963894i \(-0.585797\pi\)
−0.266286 + 0.963894i \(0.585797\pi\)
\(824\) −1.42897e10 1.73815e10i −0.0309966 0.0377032i
\(825\) 0 0
\(826\) −6.23132e9 + 2.05632e10i −0.0133863 + 0.0441743i
\(827\) −6.25569e11 −1.33738 −0.668688 0.743543i \(-0.733144\pi\)
−0.668688 + 0.743543i \(0.733144\pi\)
\(828\) −7.98357e10 5.32782e10i −0.169854 0.113352i
\(829\) 7.91341e11 1.67550 0.837752 0.546051i \(-0.183869\pi\)
0.837752 + 0.546051i \(0.183869\pi\)
\(830\) 0 0
\(831\) 4.35132e11i 0.912466i
\(832\) 2.90618e11 + 5.72874e10i 0.606497 + 0.119554i
\(833\) 5.84816e11i 1.21462i
\(834\) 1.41898e11 4.68257e11i 0.293299 0.967878i
\(835\) 0 0
\(836\) 3.23175e9 + 2.15670e9i 0.00661626 + 0.00441535i
\(837\) 2.40396e11i 0.489808i
\(838\) 1.62346e11 5.35735e11i 0.329204 1.08636i
\(839\) 1.97673e11i 0.398933i −0.979905 0.199466i \(-0.936079\pi\)
0.979905 0.199466i \(-0.0639209\pi\)
\(840\) 0 0
\(841\) 2.48297e11 0.496350
\(842\) −1.79879e11 5.45094e10i −0.357876 0.108448i
\(843\) 5.87189e11 1.16270
\(844\) 2.38659e11 3.57623e11i 0.470336 0.704783i
\(845\) 0 0
\(846\) 9.62726e10 + 2.91738e10i 0.187941 + 0.0569524i
\(847\) −4.50851e10 −0.0875990
\(848\) −9.41760e11 + 3.91357e11i −1.82120 + 0.756815i
\(849\) −2.69707e11 −0.519112
\(850\) 0 0
\(851\) 1.14705e12i 2.18708i
\(852\) −4.78431e11 + 7.16914e11i −0.907949 + 1.36053i
\(853\) 9.60505e11i 1.81428i 0.420833 + 0.907138i \(0.361738\pi\)
−0.420833 + 0.907138i \(0.638262\pi\)
\(854\) 6.54770e9 + 1.98417e9i 0.0123100 + 0.00373033i
\(855\) 0 0
\(856\) 1.19183e11 + 1.44970e11i 0.221983 + 0.270012i
\(857\) 1.83889e10i 0.0340904i −0.999855 0.0170452i \(-0.994574\pi\)
0.999855 0.0170452i \(-0.00542592\pi\)
\(858\) 2.90230e9 + 8.79495e8i 0.00535542 + 0.00162287i
\(859\) 2.58648e11i 0.475048i 0.971382 + 0.237524i \(0.0763358\pi\)
−0.971382 + 0.237524i \(0.923664\pi\)
\(860\) 0 0
\(861\) 4.74884e10 0.0864123
\(862\) 1.91132e11 6.30729e11i 0.346182 1.14239i
\(863\) 4.58083e11 0.825849 0.412925 0.910765i \(-0.364507\pi\)
0.412925 + 0.910765i \(0.364507\pi\)
\(864\) 5.83252e10 + 5.83600e11i 0.104665 + 1.04727i
\(865\) 0 0
\(866\) −6.44420e10 + 2.12656e11i −0.114577 + 0.378100i
\(867\) −2.63254e11 −0.465906
\(868\) −1.28467e10 + 1.92504e10i −0.0226315 + 0.0339126i
\(869\) 2.89099e9 0.00506953
\(870\) 0 0
\(871\) 3.59294e11i 0.624277i
\(872\) 3.51133e11 + 4.27106e11i 0.607303 + 0.738703i
\(873\) 2.78409e10i 0.0479320i
\(874\) 2.26354e11 7.46961e11i 0.387921 1.28012i
\(875\) 0 0
\(876\) −1.93611e11 + 2.90120e11i −0.328786 + 0.492675i
\(877\) 9.94220e11i 1.68068i 0.542062 + 0.840338i \(0.317644\pi\)
−0.542062 + 0.840338i \(0.682356\pi\)
\(878\) −1.05228e11 + 3.47249e11i −0.177074 + 0.584337i
\(879\) 4.25604e11i 0.712935i
\(880\) 0 0
\(881\) 4.02463e11 0.668071 0.334036 0.942560i \(-0.391589\pi\)
0.334036 + 0.942560i \(0.391589\pi\)
\(882\) −7.20962e10 2.18476e10i −0.119135 0.0361018i
\(883\) −7.19682e11 −1.18385 −0.591926 0.805992i \(-0.701632\pi\)
−0.591926 + 0.805992i \(0.701632\pi\)
\(884\) 3.84338e11 + 2.56488e11i 0.629368 + 0.420008i
\(885\) 0 0
\(886\) −6.25024e11 1.89403e11i −1.01429 0.307363i
\(887\) 4.82885e11 0.780097 0.390049 0.920794i \(-0.372458\pi\)
0.390049 + 0.920794i \(0.372458\pi\)
\(888\) 6.03514e11 4.96161e11i 0.970589 0.797941i
\(889\) 8.18053e10 0.130971
\(890\) 0 0
\(891\) 5.23941e9i 0.00831326i
\(892\) 2.35804e11 + 1.57364e11i 0.372470 + 0.248568i
\(893\) 8.18034e11i 1.28637i
\(894\) 2.93144e11 + 8.88324e10i 0.458913 + 0.139066i
\(895\) 0 0
\(896\) −2.65169e10 + 4.98502e10i −0.0411425 + 0.0773455i
\(897\) 6.09215e11i 0.941024i
\(898\) 6.36811e11 + 1.92975e11i 0.979277 + 0.296753i
\(899\) 3.71846e11i 0.569278i
\(900\) 0 0
\(901\) −1.59086e12 −2.41398
\(902\) 1.95999e9 6.46789e9i 0.00296092 0.00977094i
\(903\) −3.54086e10 −0.0532547
\(904\) −4.82762e11 + 3.96889e11i −0.722869 + 0.594285i
\(905\) 0 0
\(906\) −4.03462e10 + 1.33141e11i −0.0598811 + 0.197606i
\(907\) 1.11961e12 1.65439 0.827194 0.561917i \(-0.189936\pi\)
0.827194 + 0.561917i \(0.189936\pi\)
\(908\) 8.84976e11 + 5.90588e11i 1.30193 + 0.868842i
\(909\) −4.49753e10 −0.0658746
\(910\) 0 0
\(911\) 1.90411e10i 0.0276451i −0.999904 0.0138225i \(-0.995600\pi\)
0.999904 0.0138225i \(-0.00439999\pi\)
\(912\) −4.90918e11 + 2.04006e11i −0.709626 + 0.294892i
\(913\) 7.21501e9i 0.0103837i
\(914\) −3.69506e11 + 1.21936e12i −0.529464 + 1.74721i
\(915\) 0 0
\(916\) −2.86702e11 1.91330e11i −0.407238 0.271770i
\(917\) 1.11969e11i 0.158351i
\(918\) −2.65330e11 + 8.75582e11i −0.373608 + 1.23289i
\(919\) 1.16760e11i 0.163694i 0.996645 + 0.0818470i \(0.0260819\pi\)
−0.996645 + 0.0818470i \(0.973918\pi\)
\(920\) 0 0
\(921\) 8.88852e11 1.23535
\(922\) 3.56631e11 + 1.08071e11i 0.493509 + 0.149550i
\(923\) 7.84722e11 1.08121
\(924\) −3.20891e8 + 4.80845e8i −0.000440220 + 0.000659656i
\(925\) 0 0
\(926\) 5.77940e11 + 1.75135e11i 0.786030 + 0.238193i
\(927\) −4.52148e9 −0.00612296
\(928\) 9.02177e10 + 9.02714e11i 0.121647 + 1.21719i
\(929\) 8.06361e11 1.08260 0.541298 0.840831i \(-0.317933\pi\)
0.541298 + 0.840831i \(0.317933\pi\)
\(930\) 0 0
\(931\) 6.12606e11i 0.815422i
\(932\) −3.66336e10 + 5.48942e10i −0.0485529 + 0.0727550i
\(933\) 6.29299e11i 0.830482i
\(934\) 5.50120e11 + 1.66705e11i 0.722887 + 0.219059i
\(935\) 0 0
\(936\) 4.59779e10 3.77994e10i 0.0599027 0.0492472i
\(937\) 1.43350e12i 1.85968i −0.367959 0.929842i \(-0.619943\pi\)
0.367959 0.929842i \(-0.380057\pi\)
\(938\) −6.55458e10 1.98626e10i −0.0846708 0.0256581i
\(939\) 6.50353e11i 0.836540i
\(940\) 0 0
\(941\) −1.41766e12 −1.80806 −0.904029 0.427472i \(-0.859404\pi\)
−0.904029 + 0.427472i \(0.859404\pi\)
\(942\) −1.22586e11 + 4.04530e11i −0.155682 + 0.513744i
\(943\) −1.35766e12 −1.71690
\(944\) −3.86370e11 + 1.60560e11i −0.486537 + 0.202185i
\(945\) 0 0
\(946\) −1.46142e9 + 4.82263e9i −0.00182478 + 0.00602170i
\(947\) 7.59493e11 0.944331 0.472165 0.881510i \(-0.343473\pi\)
0.472165 + 0.881510i \(0.343473\pi\)
\(948\) −2.19578e11 + 3.29030e11i −0.271866 + 0.407382i
\(949\) 3.17560e11 0.391527
\(950\) 0 0
\(951\) 1.90215e11i 0.232553i
\(952\) −6.80379e10 + 5.59354e10i −0.0828330 + 0.0680987i
\(953\) 3.72618e11i 0.451743i 0.974157 + 0.225872i \(0.0725230\pi\)
−0.974157 + 0.225872i \(0.927477\pi\)
\(954\) −5.94315e10 + 1.96122e11i −0.0717502 + 0.236773i
\(955\) 0 0
\(956\) −5.43617e10 + 8.14592e10i −0.0650821 + 0.0975234i
\(957\) 9.28814e9i 0.0110734i
\(958\) 2.04475e11 6.74760e11i 0.242760 0.801101i
\(959\) 1.07561e11i 0.127169i
\(960\) 0 0
\(961\) 6.68173e11 0.783421
\(962\) −6.80759e11 2.06293e11i −0.794865 0.240870i
\(963\) 3.77114e10 0.0438497
\(964\) −1.17061e12 7.81206e11i −1.35552 0.904601i
\(965\) 0 0
\(966\) 1.11139e11 + 3.36787e10i 0.127631 + 0.0386765i
\(967\) 7.07203e11 0.808794 0.404397 0.914584i \(-0.367481\pi\)
0.404397 + 0.914584i \(0.367481\pi\)
\(968\) −5.57538e11 6.78171e11i −0.634999 0.772392i
\(969\) −8.29281e11 −0.940603
\(970\) 0 0
\(971\) 1.48456e12i 1.67001i −0.550240 0.835007i \(-0.685464\pi\)
0.550240 0.835007i \(-0.314536\pi\)
\(972\) 1.85133e11 + 1.23548e11i 0.207404 + 0.138411i
\(973\) 8.49173e10i 0.0947425i
\(974\) 6.11457e11 + 1.85292e11i 0.679407 + 0.205883i
\(975\) 0 0
\(976\) 5.11252e10 + 1.23027e11i 0.0563424 + 0.135582i
\(977\) 4.31329e10i 0.0473402i 0.999720 + 0.0236701i \(0.00753513\pi\)
−0.999720 + 0.0236701i \(0.992465\pi\)
\(978\) −3.43581e11 1.04116e11i −0.375555 0.113806i
\(979\) 3.80263e9i 0.00413955i
\(980\) 0 0
\(981\) 1.11104e11 0.119965
\(982\) −3.69699e11 + 1.21999e12i −0.397559 + 1.31193i
\(983\) 1.13842e12 1.21923 0.609617 0.792696i \(-0.291323\pi\)
0.609617 + 0.792696i \(0.291323\pi\)
\(984\) 5.87259e11 + 7.14322e11i 0.626396 + 0.761927i
\(985\) 0 0
\(986\) −4.10414e11 + 1.35435e12i −0.434225 + 1.43293i
\(987\) −1.21714e11 −0.128254
\(988\) 4.02602e11 + 2.68676e11i 0.422520 + 0.281968i
\(989\) 1.01231e12 1.05810
\(990\) 0 0
\(991\) 6.27241e11i 0.650339i 0.945656 + 0.325170i \(0.105421\pi\)
−0.945656 + 0.325170i \(0.894579\pi\)
\(992\) −4.48432e11 + 4.48165e10i −0.463073 + 0.0462797i
\(993\) 1.05223e12i 1.08222i
\(994\) −4.33812e10 + 1.43156e11i −0.0444381 + 0.146644i
\(995\) 0 0
\(996\) 8.21156e11 + 5.47997e11i 0.834427 + 0.556854i
\(997\) 2.64260e11i 0.267455i −0.991018 0.133728i \(-0.957305\pi\)
0.991018 0.133728i \(-0.0426947\pi\)
\(998\) 7.24750e10 2.39165e11i 0.0730578 0.241088i
\(999\) 1.40846e12i 1.41411i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 100.9.d.c.99.3 32
4.3 odd 2 inner 100.9.d.c.99.29 32
5.2 odd 4 20.9.b.a.11.9 16
5.3 odd 4 100.9.b.d.51.8 16
5.4 even 2 inner 100.9.d.c.99.30 32
15.2 even 4 180.9.c.a.91.8 16
20.3 even 4 100.9.b.d.51.7 16
20.7 even 4 20.9.b.a.11.10 yes 16
20.19 odd 2 inner 100.9.d.c.99.4 32
40.27 even 4 320.9.b.d.191.5 16
40.37 odd 4 320.9.b.d.191.12 16
60.47 odd 4 180.9.c.a.91.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.9.b.a.11.9 16 5.2 odd 4
20.9.b.a.11.10 yes 16 20.7 even 4
100.9.b.d.51.7 16 20.3 even 4
100.9.b.d.51.8 16 5.3 odd 4
100.9.d.c.99.3 32 1.1 even 1 trivial
100.9.d.c.99.4 32 20.19 odd 2 inner
100.9.d.c.99.29 32 4.3 odd 2 inner
100.9.d.c.99.30 32 5.4 even 2 inner
180.9.c.a.91.7 16 60.47 odd 4
180.9.c.a.91.8 16 15.2 even 4
320.9.b.d.191.5 16 40.27 even 4
320.9.b.d.191.12 16 40.37 odd 4