Properties

Label 180.9.c.a.91.8
Level $180$
Weight $9$
Character 180.91
Analytic conductor $73.328$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [180,9,Mod(91,180)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(180, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("180.91"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 180.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(73.3281498110\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 15630052 x^{14} + 100431843210026 x^{12} + \cdots + 41\!\cdots\!25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{58}\cdot 3^{4}\cdot 5^{16} \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 91.8
Root \(-105.172i\) of defining polynomial
Character \(\chi\) \(=\) 180.91
Dual form 180.9.c.a.91.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.64016 + 15.3124i) q^{2} +(-212.938 - 142.104i) q^{4} +279.508 q^{5} -210.345i q^{7} +(3164.01 - 2601.20i) q^{8} +(-1296.96 + 4279.94i) q^{10} +141.724i q^{11} -17655.5 q^{13} +(3220.88 + 976.035i) q^{14} +(25149.0 + 60518.5i) q^{16} +102231. q^{17} -107088. i q^{19} +(-59517.9 - 39719.2i) q^{20} +(-2170.13 - 657.620i) q^{22} +455526. i q^{23} +78125.0 q^{25} +(81924.3 - 270348. i) q^{26} +(-29890.8 + 44790.4i) q^{28} -865184. q^{29} -429788. i q^{31} +(-1.04338e6 + 104276. i) q^{32} +(-474366. + 1.56539e6i) q^{34} -58793.2i q^{35} -2.51809e6 q^{37} +(1.63978e6 + 496908. i) q^{38} +(884368. - 727057. i) q^{40} +2.98042e6 q^{41} -2.22228e6i q^{43} +(20139.5 - 30178.3i) q^{44} +(-6.97518e6 - 2.11371e6i) q^{46} -7.63886e6i q^{47} +5.72056e6 q^{49} +(-362513. + 1.19628e6i) q^{50} +(3.75952e6 + 2.50891e6i) q^{52} -1.55615e7 q^{53} +39613.0i q^{55} +(-547149. - 665534. i) q^{56} +(4.01459e6 - 1.32480e7i) q^{58} +6.38433e6i q^{59} +2.03289e6 q^{61} +(6.58108e6 + 1.99429e6i) q^{62} +(3.24473e6 - 1.64605e7i) q^{64} -4.93486e6 q^{65} -2.03503e7i q^{67} +(-2.17688e7 - 1.45274e7i) q^{68} +(900264. + 272810. i) q^{70} -4.44463e7i q^{71} +1.79865e7 q^{73} +(1.16843e7 - 3.85579e7i) q^{74} +(-1.52177e7 + 2.28032e7i) q^{76} +29810.9 q^{77} -2.03988e7i q^{79} +(7.02937e6 + 1.69154e7i) q^{80} +(-1.38296e7 + 4.56374e7i) q^{82} +5.09090e7i q^{83} +2.85743e7 q^{85} +(3.40284e7 + 1.03117e7i) q^{86} +(368651. + 448415. i) q^{88} +2.68313e7 q^{89} +3.71375e6i q^{91} +(6.47319e7 - 9.69986e7i) q^{92} +(1.16969e8 + 3.54456e7i) q^{94} -2.99321e7i q^{95} +3.38260e7 q^{97} +(-2.65443e7 + 8.75953e7i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{2} - 52 q^{4} + 14184 q^{8} + 8750 q^{10} + 51392 q^{13} - 68472 q^{14} - 81424 q^{16} - 27552 q^{17} - 172500 q^{20} - 389120 q^{22} + 1250000 q^{25} - 1037124 q^{26} + 1288520 q^{28} - 2764896 q^{29}+ \cdots + 285387714 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/180\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(91\) \(101\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.64016 + 15.3124i −0.290010 + 0.957024i
\(3\) 0 0
\(4\) −212.938 142.104i −0.831788 0.555093i
\(5\) 279.508 0.447214
\(6\) 0 0
\(7\) 210.345i 0.0876072i −0.999040 0.0438036i \(-0.986052\pi\)
0.999040 0.0438036i \(-0.0139476\pi\)
\(8\) 3164.01 2601.20i 0.772464 0.635059i
\(9\) 0 0
\(10\) −1296.96 + 4279.94i −0.129696 + 0.427994i
\(11\) 141.724i 0.00967991i 0.999988 + 0.00483996i \(0.00154061\pi\)
−0.999988 + 0.00483996i \(0.998459\pi\)
\(12\) 0 0
\(13\) −17655.5 −0.618168 −0.309084 0.951035i \(-0.600022\pi\)
−0.309084 + 0.951035i \(0.600022\pi\)
\(14\) 3220.88 + 976.035i 0.0838422 + 0.0254070i
\(15\) 0 0
\(16\) 25149.0 + 60518.5i 0.383744 + 0.923440i
\(17\) 102231. 1.22401 0.612005 0.790854i \(-0.290363\pi\)
0.612005 + 0.790854i \(0.290363\pi\)
\(18\) 0 0
\(19\) 107088.i 0.821728i −0.911697 0.410864i \(-0.865227\pi\)
0.911697 0.410864i \(-0.134773\pi\)
\(20\) −59517.9 39719.2i −0.371987 0.248245i
\(21\) 0 0
\(22\) −2170.13 657.620i −0.00926391 0.00280727i
\(23\) 455526.i 1.62780i 0.581004 + 0.813901i \(0.302660\pi\)
−0.581004 + 0.813901i \(0.697340\pi\)
\(24\) 0 0
\(25\) 78125.0 0.200000
\(26\) 81924.3 270348.i 0.179275 0.591601i
\(27\) 0 0
\(28\) −29890.8 + 44790.4i −0.0486302 + 0.0728707i
\(29\) −865184. −1.22325 −0.611627 0.791146i \(-0.709485\pi\)
−0.611627 + 0.791146i \(0.709485\pi\)
\(30\) 0 0
\(31\) 429788.i 0.465380i −0.972551 0.232690i \(-0.925247\pi\)
0.972551 0.232690i \(-0.0747528\pi\)
\(32\) −1.04338e6 + 104276.i −0.995043 + 0.0994450i
\(33\) 0 0
\(34\) −474366. + 1.56539e6i −0.354975 + 1.17141i
\(35\) 58793.2i 0.0391792i
\(36\) 0 0
\(37\) −2.51809e6 −1.34358 −0.671791 0.740741i \(-0.734475\pi\)
−0.671791 + 0.740741i \(0.734475\pi\)
\(38\) 1.63978e6 + 496908.i 0.786414 + 0.238310i
\(39\) 0 0
\(40\) 884368. 727057.i 0.345456 0.284007i
\(41\) 2.98042e6 1.05473 0.527366 0.849638i \(-0.323180\pi\)
0.527366 + 0.849638i \(0.323180\pi\)
\(42\) 0 0
\(43\) 2.22228e6i 0.650018i −0.945711 0.325009i \(-0.894633\pi\)
0.945711 0.325009i \(-0.105367\pi\)
\(44\) 20139.5 30178.3i 0.00537325 0.00805164i
\(45\) 0 0
\(46\) −6.97518e6 2.11371e6i −1.55784 0.472079i
\(47\) 7.63886e6i 1.56544i −0.622372 0.782722i \(-0.713831\pi\)
0.622372 0.782722i \(-0.286169\pi\)
\(48\) 0 0
\(49\) 5.72056e6 0.992325
\(50\) −362513. + 1.19628e6i −0.0580020 + 0.191405i
\(51\) 0 0
\(52\) 3.75952e6 + 2.50891e6i 0.514185 + 0.343141i
\(53\) −1.55615e7 −1.97219 −0.986094 0.166186i \(-0.946855\pi\)
−0.986094 + 0.166186i \(0.946855\pi\)
\(54\) 0 0
\(55\) 39613.0i 0.00432899i
\(56\) −547149. 665534.i −0.0556357 0.0676734i
\(57\) 0 0
\(58\) 4.01459e6 1.32480e7i 0.354756 1.17068i
\(59\) 6.38433e6i 0.526874i 0.964677 + 0.263437i \(0.0848562\pi\)
−0.964677 + 0.263437i \(0.915144\pi\)
\(60\) 0 0
\(61\) 2.03289e6 0.146823 0.0734116 0.997302i \(-0.476611\pi\)
0.0734116 + 0.997302i \(0.476611\pi\)
\(62\) 6.58108e6 + 1.99429e6i 0.445380 + 0.134965i
\(63\) 0 0
\(64\) 3.24473e6 1.64605e7i 0.193401 0.981120i
\(65\) −4.93486e6 −0.276453
\(66\) 0 0
\(67\) 2.03503e7i 1.00988i −0.863154 0.504941i \(-0.831514\pi\)
0.863154 0.504941i \(-0.168486\pi\)
\(68\) −2.17688e7 1.45274e7i −1.01812 0.679439i
\(69\) 0 0
\(70\) 900264. + 272810.i 0.0374954 + 0.0113623i
\(71\) 4.44463e7i 1.74905i −0.484979 0.874526i \(-0.661173\pi\)
0.484979 0.874526i \(-0.338827\pi\)
\(72\) 0 0
\(73\) 1.79865e7 0.633366 0.316683 0.948531i \(-0.397431\pi\)
0.316683 + 0.948531i \(0.397431\pi\)
\(74\) 1.16843e7 3.85579e7i 0.389652 1.28584i
\(75\) 0 0
\(76\) −1.52177e7 + 2.28032e7i −0.456136 + 0.683504i
\(77\) 29810.9 0.000848031
\(78\) 0 0
\(79\) 2.03988e7i 0.523716i −0.965106 0.261858i \(-0.915665\pi\)
0.965106 0.261858i \(-0.0843352\pi\)
\(80\) 7.02937e6 + 1.69154e7i 0.171615 + 0.412975i
\(81\) 0 0
\(82\) −1.38296e7 + 4.56374e7i −0.305883 + 1.00940i
\(83\) 5.09090e7i 1.07271i 0.843992 + 0.536355i \(0.180199\pi\)
−0.843992 + 0.536355i \(0.819801\pi\)
\(84\) 0 0
\(85\) 2.85743e7 0.547394
\(86\) 3.40284e7 + 1.03117e7i 0.622082 + 0.188512i
\(87\) 0 0
\(88\) 368651. + 448415.i 0.00614731 + 0.00747738i
\(89\) 2.68313e7 0.427644 0.213822 0.976873i \(-0.431409\pi\)
0.213822 + 0.976873i \(0.431409\pi\)
\(90\) 0 0
\(91\) 3.71375e6i 0.0541560i
\(92\) 6.47319e7 9.69986e7i 0.903581 1.35399i
\(93\) 0 0
\(94\) 1.16969e8 + 3.54456e7i 1.49817 + 0.453994i
\(95\) 2.99321e7i 0.367488i
\(96\) 0 0
\(97\) 3.38260e7 0.382089 0.191044 0.981581i \(-0.438813\pi\)
0.191044 + 0.981581i \(0.438813\pi\)
\(98\) −2.65443e7 + 8.75953e7i −0.287784 + 0.949678i
\(99\) 0 0
\(100\) −1.66358e7 1.11019e7i −0.166358 0.111019i
\(101\) −5.46440e7 −0.525118 −0.262559 0.964916i \(-0.584566\pi\)
−0.262559 + 0.964916i \(0.584566\pi\)
\(102\) 0 0
\(103\) 5.49350e6i 0.0488090i −0.999702 0.0244045i \(-0.992231\pi\)
0.999702 0.0244045i \(-0.00776897\pi\)
\(104\) −5.58622e7 + 4.59255e7i −0.477513 + 0.392573i
\(105\) 0 0
\(106\) 7.22080e7 2.38284e8i 0.571955 1.88743i
\(107\) 4.58185e7i 0.349547i 0.984609 + 0.174773i \(0.0559193\pi\)
−0.984609 + 0.174773i \(0.944081\pi\)
\(108\) 0 0
\(109\) 1.34989e8 0.956295 0.478147 0.878280i \(-0.341308\pi\)
0.478147 + 0.878280i \(0.341308\pi\)
\(110\) −606569. 183810.i −0.00414294 0.00125545i
\(111\) 0 0
\(112\) 1.27298e7 5.28997e6i 0.0809000 0.0336187i
\(113\) 1.52579e8 0.935796 0.467898 0.883783i \(-0.345011\pi\)
0.467898 + 0.883783i \(0.345011\pi\)
\(114\) 0 0
\(115\) 1.27323e8i 0.727975i
\(116\) 1.84230e8 + 1.22946e8i 1.01749 + 0.679020i
\(117\) 0 0
\(118\) −9.77592e7 2.96243e7i −0.504231 0.152799i
\(119\) 2.15037e7i 0.107232i
\(120\) 0 0
\(121\) 2.14339e8 0.999906
\(122\) −9.43293e6 + 3.11284e7i −0.0425802 + 0.140513i
\(123\) 0 0
\(124\) −6.10746e7 + 9.15182e7i −0.258329 + 0.387098i
\(125\) 2.18366e7 0.0894427
\(126\) 0 0
\(127\) 3.88910e8i 1.49498i −0.664275 0.747488i \(-0.731260\pi\)
0.664275 0.747488i \(-0.268740\pi\)
\(128\) 2.36993e8 + 1.26064e8i 0.882866 + 0.469624i
\(129\) 0 0
\(130\) 2.28985e7 7.55645e7i 0.0801742 0.264572i
\(131\) 5.32310e8i 1.80750i −0.428056 0.903752i \(-0.640801\pi\)
0.428056 0.903752i \(-0.359199\pi\)
\(132\) 0 0
\(133\) −2.25255e7 −0.0719894
\(134\) 3.11611e8 + 9.44285e7i 0.966482 + 0.292876i
\(135\) 0 0
\(136\) 3.23459e8 2.65922e8i 0.945504 0.777318i
\(137\) 5.11356e8 1.45158 0.725790 0.687916i \(-0.241474\pi\)
0.725790 + 0.687916i \(0.241474\pi\)
\(138\) 0 0
\(139\) 4.03705e8i 1.08145i −0.841201 0.540723i \(-0.818151\pi\)
0.841201 0.540723i \(-0.181849\pi\)
\(140\) −8.35474e6 + 1.25193e7i −0.0217481 + 0.0325888i
\(141\) 0 0
\(142\) 6.80579e8 + 2.06238e8i 1.67388 + 0.507243i
\(143\) 2.50220e6i 0.00598381i
\(144\) 0 0
\(145\) −2.41826e8 −0.547056
\(146\) −8.34602e7 + 2.75416e8i −0.183683 + 0.606146i
\(147\) 0 0
\(148\) 5.36196e8 + 3.57830e8i 1.11758 + 0.745813i
\(149\) −2.52732e8 −0.512761 −0.256381 0.966576i \(-0.582530\pi\)
−0.256381 + 0.966576i \(0.582530\pi\)
\(150\) 0 0
\(151\) 1.14787e8i 0.220792i −0.993888 0.110396i \(-0.964788\pi\)
0.993888 0.110396i \(-0.0352119\pi\)
\(152\) −2.78559e8 3.38829e8i −0.521846 0.634756i
\(153\) 0 0
\(154\) −138327. + 456475.i −0.000245937 + 0.000811585i
\(155\) 1.20130e8i 0.208124i
\(156\) 0 0
\(157\) 3.48763e8 0.574026 0.287013 0.957927i \(-0.407338\pi\)
0.287013 + 0.957927i \(0.407338\pi\)
\(158\) 3.12354e8 + 9.46536e7i 0.501209 + 0.151883i
\(159\) 0 0
\(160\) −2.91633e8 + 2.91459e7i −0.444997 + 0.0444732i
\(161\) 9.58175e7 0.142607
\(162\) 0 0
\(163\) 2.96216e8i 0.419622i −0.977742 0.209811i \(-0.932715\pi\)
0.977742 0.209811i \(-0.0672848\pi\)
\(164\) −6.34645e8 4.23529e8i −0.877314 0.585475i
\(165\) 0 0
\(166\) −7.79538e8 2.36226e8i −1.02661 0.311097i
\(167\) 1.56004e8i 0.200572i 0.994959 + 0.100286i \(0.0319757\pi\)
−0.994959 + 0.100286i \(0.968024\pi\)
\(168\) 0 0
\(169\) −5.04014e8 −0.617868
\(170\) −1.32589e8 + 4.37541e8i −0.158750 + 0.523869i
\(171\) 0 0
\(172\) −3.15795e8 + 4.73208e8i −0.360820 + 0.540677i
\(173\) −4.66034e8 −0.520276 −0.260138 0.965572i \(-0.583768\pi\)
−0.260138 + 0.965572i \(0.583768\pi\)
\(174\) 0 0
\(175\) 1.64332e7i 0.0175214i
\(176\) −8.57691e6 + 3.56421e6i −0.00893882 + 0.00371461i
\(177\) 0 0
\(178\) −1.24502e8 + 4.10851e8i −0.124021 + 0.409265i
\(179\) 1.44673e9i 1.40921i −0.709600 0.704605i \(-0.751124\pi\)
0.709600 0.704605i \(-0.248876\pi\)
\(180\) 0 0
\(181\) −5.80491e8 −0.540855 −0.270428 0.962740i \(-0.587165\pi\)
−0.270428 + 0.962740i \(0.587165\pi\)
\(182\) −5.68663e7 1.72324e7i −0.0518286 0.0157058i
\(183\) 0 0
\(184\) 1.18491e9 + 1.44129e9i 1.03375 + 1.25742i
\(185\) −7.03827e8 −0.600868
\(186\) 0 0
\(187\) 1.44885e7i 0.0118483i
\(188\) −1.08551e9 + 1.62660e9i −0.868966 + 1.30212i
\(189\) 0 0
\(190\) 4.58332e8 + 1.38890e8i 0.351695 + 0.106575i
\(191\) 2.29528e9i 1.72465i −0.506351 0.862327i \(-0.669006\pi\)
0.506351 0.862327i \(-0.330994\pi\)
\(192\) 0 0
\(193\) −1.42541e9 −1.02733 −0.513665 0.857991i \(-0.671713\pi\)
−0.513665 + 0.857991i \(0.671713\pi\)
\(194\) −1.56958e8 + 5.17957e8i −0.110810 + 0.365668i
\(195\) 0 0
\(196\) −1.21812e9 8.12913e8i −0.825404 0.550833i
\(197\) −1.42075e9 −0.943305 −0.471652 0.881785i \(-0.656342\pi\)
−0.471652 + 0.881785i \(0.656342\pi\)
\(198\) 0 0
\(199\) 1.90032e9i 1.21176i 0.795557 + 0.605878i \(0.207178\pi\)
−0.795557 + 0.605878i \(0.792822\pi\)
\(200\) 2.47188e8 2.03219e8i 0.154493 0.127012i
\(201\) 0 0
\(202\) 2.53557e8 8.36729e8i 0.152289 0.502550i
\(203\) 1.81987e8i 0.107166i
\(204\) 0 0
\(205\) 8.33053e8 0.471691
\(206\) 8.41185e7 + 2.54907e7i 0.0467114 + 0.0141551i
\(207\) 0 0
\(208\) −4.44019e8 1.06848e9i −0.237218 0.570841i
\(209\) 1.51770e7 0.00795426
\(210\) 0 0
\(211\) 1.67947e9i 0.847311i −0.905823 0.423655i \(-0.860747\pi\)
0.905823 0.423655i \(-0.139253\pi\)
\(212\) 3.31364e9 + 2.21135e9i 1.64044 + 1.09475i
\(213\) 0 0
\(214\) −7.01590e8 2.12605e8i −0.334525 0.101372i
\(215\) 6.21146e8i 0.290697i
\(216\) 0 0
\(217\) −9.04039e7 −0.0407707
\(218\) −6.26370e8 + 2.06700e9i −0.277335 + 0.915197i
\(219\) 0 0
\(220\) 5.62915e6 8.43510e6i 0.00240299 0.00360080i
\(221\) −1.80493e9 −0.756644
\(222\) 0 0
\(223\) 1.10738e9i 0.447795i −0.974613 0.223897i \(-0.928122\pi\)
0.974613 0.223897i \(-0.0718780\pi\)
\(224\) 2.19339e7 + 2.19469e8i 0.00871210 + 0.0871730i
\(225\) 0 0
\(226\) −7.07991e8 + 2.33635e9i −0.271390 + 0.895579i
\(227\) 4.15603e9i 1.56522i −0.622512 0.782610i \(-0.713888\pi\)
0.622512 0.782610i \(-0.286112\pi\)
\(228\) 0 0
\(229\) 1.34641e9 0.489594 0.244797 0.969574i \(-0.421279\pi\)
0.244797 + 0.969574i \(0.421279\pi\)
\(230\) −1.94962e9 5.90800e8i −0.696689 0.211120i
\(231\) 0 0
\(232\) −2.73745e9 + 2.25052e9i −0.944920 + 0.776838i
\(233\) −2.57794e8 −0.0874681 −0.0437341 0.999043i \(-0.513925\pi\)
−0.0437341 + 0.999043i \(0.513925\pi\)
\(234\) 0 0
\(235\) 2.13513e9i 0.700087i
\(236\) 9.07237e8 1.35946e9i 0.292464 0.438248i
\(237\) 0 0
\(238\) 3.29273e8 + 9.97806e7i 0.102624 + 0.0310984i
\(239\) 3.82549e8i 0.117245i 0.998280 + 0.0586227i \(0.0186709\pi\)
−0.998280 + 0.0586227i \(0.981329\pi\)
\(240\) 0 0
\(241\) −5.49743e9 −1.62964 −0.814820 0.579714i \(-0.803164\pi\)
−0.814820 + 0.579714i \(0.803164\pi\)
\(242\) −9.94566e8 + 3.28204e9i −0.289983 + 0.956934i
\(243\) 0 0
\(244\) −4.32879e8 2.88881e8i −0.122126 0.0815005i
\(245\) 1.59894e9 0.443781
\(246\) 0 0
\(247\) 1.89070e9i 0.507966i
\(248\) −1.11797e9 1.35986e9i −0.295544 0.359490i
\(249\) 0 0
\(250\) −1.01325e8 + 3.34370e8i −0.0259393 + 0.0855988i
\(251\) 7.22250e9i 1.81967i 0.414971 + 0.909835i \(0.363792\pi\)
−0.414971 + 0.909835i \(0.636208\pi\)
\(252\) 0 0
\(253\) −6.45587e7 −0.0157570
\(254\) 5.95514e9 + 1.80460e9i 1.43073 + 0.433558i
\(255\) 0 0
\(256\) −3.03002e9 + 3.04396e9i −0.705482 + 0.708728i
\(257\) 1.49317e9 0.342277 0.171138 0.985247i \(-0.445256\pi\)
0.171138 + 0.985247i \(0.445256\pi\)
\(258\) 0 0
\(259\) 5.29667e8i 0.117707i
\(260\) 1.05082e9 + 7.01262e8i 0.229950 + 0.153457i
\(261\) 0 0
\(262\) 8.15093e9 + 2.47000e9i 1.72982 + 0.524195i
\(263\) 4.58536e9i 0.958409i −0.877703 0.479205i \(-0.840925\pi\)
0.877703 0.479205i \(-0.159075\pi\)
\(264\) 0 0
\(265\) −4.34958e9 −0.881990
\(266\) 1.04522e8 3.44919e8i 0.0208776 0.0688955i
\(267\) 0 0
\(268\) −2.89185e9 + 4.33334e9i −0.560579 + 0.840009i
\(269\) −5.70969e9 −1.09044 −0.545222 0.838292i \(-0.683555\pi\)
−0.545222 + 0.838292i \(0.683555\pi\)
\(270\) 0 0
\(271\) 8.61657e9i 1.59756i −0.601623 0.798780i \(-0.705479\pi\)
0.601623 0.798780i \(-0.294521\pi\)
\(272\) 2.57100e9 + 6.18684e9i 0.469706 + 1.13030i
\(273\) 0 0
\(274\) −2.37277e9 + 7.83008e9i −0.420973 + 1.38920i
\(275\) 1.10722e7i 0.00193598i
\(276\) 0 0
\(277\) 5.74438e9 0.975717 0.487858 0.872923i \(-0.337778\pi\)
0.487858 + 0.872923i \(0.337778\pi\)
\(278\) 6.18168e9 + 1.87326e9i 1.03497 + 0.313630i
\(279\) 0 0
\(280\) −1.52933e8 1.86022e8i −0.0248811 0.0302645i
\(281\) −7.75176e9 −1.24330 −0.621648 0.783296i \(-0.713537\pi\)
−0.621648 + 0.783296i \(0.713537\pi\)
\(282\) 0 0
\(283\) 3.56052e9i 0.555096i 0.960712 + 0.277548i \(0.0895217\pi\)
−0.960712 + 0.277548i \(0.910478\pi\)
\(284\) −6.31599e9 + 9.46431e9i −0.970886 + 1.45484i
\(285\) 0 0
\(286\) 3.83146e7 + 1.16106e7i 0.00572665 + 0.00173537i
\(287\) 6.26917e8i 0.0924022i
\(288\) 0 0
\(289\) 3.47533e9 0.498201
\(290\) 1.12211e9 3.70294e9i 0.158652 0.523545i
\(291\) 0 0
\(292\) −3.83000e9 2.55595e9i −0.526826 0.351577i
\(293\) 5.61859e9 0.762355 0.381177 0.924502i \(-0.375519\pi\)
0.381177 + 0.924502i \(0.375519\pi\)
\(294\) 0 0
\(295\) 1.78447e9i 0.235625i
\(296\) −7.96726e9 + 6.55005e9i −1.03787 + 0.853253i
\(297\) 0 0
\(298\) 1.17272e9 3.86993e9i 0.148706 0.490725i
\(299\) 8.04253e9i 1.00625i
\(300\) 0 0
\(301\) −4.67446e8 −0.0569463
\(302\) 1.75766e9 + 5.32628e8i 0.211303 + 0.0640319i
\(303\) 0 0
\(304\) 6.48084e9 2.69317e9i 0.758817 0.315333i
\(305\) 5.68210e8 0.0656613
\(306\) 0 0
\(307\) 1.17341e10i 1.32099i 0.750832 + 0.660493i \(0.229653\pi\)
−0.750832 + 0.660493i \(0.770347\pi\)
\(308\) −6.34786e6 4.23623e6i −0.000705382 0.000470736i
\(309\) 0 0
\(310\) 1.83947e9 + 5.57420e8i 0.199180 + 0.0603582i
\(311\) 8.30766e9i 0.888050i −0.896014 0.444025i \(-0.853550\pi\)
0.896014 0.444025i \(-0.146450\pi\)
\(312\) 0 0
\(313\) −8.58561e9 −0.894528 −0.447264 0.894402i \(-0.647601\pi\)
−0.447264 + 0.894402i \(0.647601\pi\)
\(314\) −1.61831e9 + 5.34038e9i −0.166473 + 0.549356i
\(315\) 0 0
\(316\) −2.89874e9 + 4.34367e9i −0.290711 + 0.435621i
\(317\) 2.51112e9 0.248674 0.124337 0.992240i \(-0.460320\pi\)
0.124337 + 0.992240i \(0.460320\pi\)
\(318\) 0 0
\(319\) 1.22617e8i 0.0118410i
\(320\) 9.06931e8 4.60084e9i 0.0864917 0.438770i
\(321\) 0 0
\(322\) −4.44609e8 + 1.46719e9i −0.0413575 + 0.136478i
\(323\) 1.09477e10i 1.00580i
\(324\) 0 0
\(325\) −1.37934e9 −0.123634
\(326\) 4.53577e9 + 1.37449e9i 0.401588 + 0.121694i
\(327\) 0 0
\(328\) 9.43009e9 7.75267e9i 0.814743 0.669817i
\(329\) −1.60680e9 −0.137144
\(330\) 0 0
\(331\) 1.38910e10i 1.15724i −0.815599 0.578618i \(-0.803592\pi\)
0.815599 0.578618i \(-0.196408\pi\)
\(332\) 7.23437e9 1.08405e10i 0.595454 0.892268i
\(333\) 0 0
\(334\) −2.38879e9 7.23883e8i −0.191952 0.0581678i
\(335\) 5.68807e9i 0.451633i
\(336\) 0 0
\(337\) 1.74804e10 1.35529 0.677643 0.735391i \(-0.263001\pi\)
0.677643 + 0.735391i \(0.263001\pi\)
\(338\) 2.33871e9 7.71766e9i 0.179188 0.591315i
\(339\) 0 0
\(340\) −6.08455e9 4.06052e9i −0.455316 0.303855i
\(341\) 6.09112e7 0.00450484
\(342\) 0 0
\(343\) 2.41589e9i 0.174542i
\(344\) −5.78060e9 7.03133e9i −0.412799 0.502115i
\(345\) 0 0
\(346\) 2.16247e9 7.13609e9i 0.150885 0.497916i
\(347\) 4.08751e8i 0.0281930i 0.999901 + 0.0140965i \(0.00448720\pi\)
−0.999901 + 0.0140965i \(0.995513\pi\)
\(348\) 0 0
\(349\) −1.52539e10 −1.02820 −0.514102 0.857729i \(-0.671875\pi\)
−0.514102 + 0.857729i \(0.671875\pi\)
\(350\) 2.51631e8 + 7.62527e7i 0.0167684 + 0.00508140i
\(351\) 0 0
\(352\) −1.47783e7 1.47871e8i −0.000962619 0.00963193i
\(353\) 2.36311e9 0.152190 0.0760950 0.997101i \(-0.475755\pi\)
0.0760950 + 0.997101i \(0.475755\pi\)
\(354\) 0 0
\(355\) 1.24231e10i 0.782200i
\(356\) −5.71340e9 3.81283e9i −0.355709 0.237382i
\(357\) 0 0
\(358\) 2.21529e10 + 6.71306e9i 1.34865 + 0.408685i
\(359\) 1.95665e10i 1.17797i 0.808143 + 0.588987i \(0.200473\pi\)
−0.808143 + 0.588987i \(0.799527\pi\)
\(360\) 0 0
\(361\) 5.51562e9 0.324762
\(362\) 2.69357e9 8.88870e9i 0.156854 0.517611i
\(363\) 0 0
\(364\) 5.27737e8 7.90797e8i 0.0300616 0.0450463i
\(365\) 5.02737e9 0.283250
\(366\) 0 0
\(367\) 2.40655e10i 1.32657i −0.748367 0.663285i \(-0.769162\pi\)
0.748367 0.663285i \(-0.230838\pi\)
\(368\) −2.75677e10 + 1.14560e10i −1.50318 + 0.624659i
\(369\) 0 0
\(370\) 3.26587e9 1.07773e10i 0.174258 0.575045i
\(371\) 3.27329e9i 0.172778i
\(372\) 0 0
\(373\) 1.70488e10 0.880760 0.440380 0.897811i \(-0.354844\pi\)
0.440380 + 0.897811i \(0.354844\pi\)
\(374\) −2.21853e8 6.72289e7i −0.0113391 0.00343613i
\(375\) 0 0
\(376\) −1.98702e10 2.41695e10i −0.994148 1.20925i
\(377\) 1.52753e10 0.756176
\(378\) 0 0
\(379\) 1.60429e10i 0.777545i −0.921334 0.388772i \(-0.872899\pi\)
0.921334 0.388772i \(-0.127101\pi\)
\(380\) −4.25347e9 + 6.37368e9i −0.203990 + 0.305672i
\(381\) 0 0
\(382\) 3.51462e10 + 1.06505e10i 1.65054 + 0.500167i
\(383\) 1.23891e10i 0.575765i 0.957666 + 0.287883i \(0.0929513\pi\)
−0.957666 + 0.287883i \(0.907049\pi\)
\(384\) 0 0
\(385\) 8.33239e6 0.000379251
\(386\) 6.61413e9 2.18264e10i 0.297936 0.983180i
\(387\) 0 0
\(388\) −7.20284e9 4.80681e9i −0.317817 0.212095i
\(389\) 1.27527e10 0.556935 0.278467 0.960446i \(-0.410174\pi\)
0.278467 + 0.960446i \(0.410174\pi\)
\(390\) 0 0
\(391\) 4.65686e10i 1.99245i
\(392\) 1.80999e10 1.48803e10i 0.766535 0.630184i
\(393\) 0 0
\(394\) 6.59250e9 2.17550e10i 0.273568 0.902765i
\(395\) 5.70163e9i 0.234213i
\(396\) 0 0
\(397\) −1.95226e10 −0.785914 −0.392957 0.919557i \(-0.628548\pi\)
−0.392957 + 0.919557i \(0.628548\pi\)
\(398\) −2.90985e10 8.81781e9i −1.15968 0.351422i
\(399\) 0 0
\(400\) 1.96477e9 + 4.72801e9i 0.0767487 + 0.184688i
\(401\) −2.44896e10 −0.947119 −0.473559 0.880762i \(-0.657031\pi\)
−0.473559 + 0.880762i \(0.657031\pi\)
\(402\) 0 0
\(403\) 7.58813e9i 0.287683i
\(404\) 1.16358e10 + 7.76512e9i 0.436787 + 0.291489i
\(405\) 0 0
\(406\) −2.78666e9 8.44450e8i −0.102560 0.0310792i
\(407\) 3.56873e8i 0.0130058i
\(408\) 0 0
\(409\) 1.79748e10 0.642350 0.321175 0.947020i \(-0.395922\pi\)
0.321175 + 0.947020i \(0.395922\pi\)
\(410\) −3.86550e9 + 1.27560e10i −0.136795 + 0.451419i
\(411\) 0 0
\(412\) −7.80647e8 + 1.16977e9i −0.0270935 + 0.0405988i
\(413\) 1.34291e9 0.0461580
\(414\) 0 0
\(415\) 1.42295e10i 0.479731i
\(416\) 1.84214e10 1.84104e9i 0.615104 0.0614737i
\(417\) 0 0
\(418\) −7.04236e7 + 2.32395e8i −0.00230682 + 0.00761241i
\(419\) 3.49871e10i 1.13515i 0.823323 + 0.567573i \(0.192117\pi\)
−0.823323 + 0.567573i \(0.807883\pi\)
\(420\) 0 0
\(421\) 1.17473e10 0.373947 0.186973 0.982365i \(-0.440132\pi\)
0.186973 + 0.982365i \(0.440132\pi\)
\(422\) 2.57167e10 + 7.79302e9i 0.810896 + 0.245729i
\(423\) 0 0
\(424\) −4.92368e10 + 4.04786e10i −1.52344 + 1.25246i
\(425\) 7.98676e9 0.244802
\(426\) 0 0
\(427\) 4.27608e8i 0.0128628i
\(428\) 6.51098e9 9.75649e9i 0.194031 0.290749i
\(429\) 0 0
\(430\) 9.51123e9 + 2.88222e9i 0.278204 + 0.0843050i
\(431\) 4.11908e10i 1.19369i −0.802357 0.596845i \(-0.796421\pi\)
0.802357 0.596845i \(-0.203579\pi\)
\(432\) 0 0
\(433\) −1.38879e10 −0.395079 −0.197540 0.980295i \(-0.563295\pi\)
−0.197540 + 0.980295i \(0.563295\pi\)
\(434\) 4.19488e8 1.38430e9i 0.0118239 0.0390185i
\(435\) 0 0
\(436\) −2.87442e10 1.91824e10i −0.795435 0.530833i
\(437\) 4.87815e10 1.33761
\(438\) 0 0
\(439\) 2.26777e10i 0.610577i 0.952260 + 0.305289i \(0.0987530\pi\)
−0.952260 + 0.305289i \(0.901247\pi\)
\(440\) 1.03041e8 + 1.25336e8i 0.00274916 + 0.00334399i
\(441\) 0 0
\(442\) 8.37517e9 2.76378e10i 0.219434 0.724126i
\(443\) 4.08182e10i 1.05984i 0.848049 + 0.529919i \(0.177778\pi\)
−0.848049 + 0.529919i \(0.822222\pi\)
\(444\) 0 0
\(445\) 7.49958e9 0.191248
\(446\) 1.69567e10 + 5.13844e9i 0.428550 + 0.129865i
\(447\) 0 0
\(448\) −3.46237e9 6.82514e8i −0.0859532 0.0169434i
\(449\) −4.15880e10 −1.02325 −0.511626 0.859208i \(-0.670957\pi\)
−0.511626 + 0.859208i \(0.670957\pi\)
\(450\) 0 0
\(451\) 4.22396e8i 0.0102097i
\(452\) −3.24898e10 2.16821e10i −0.778384 0.519454i
\(453\) 0 0
\(454\) 6.36387e10 + 1.92847e10i 1.49795 + 0.453929i
\(455\) 1.03802e9i 0.0242193i
\(456\) 0 0
\(457\) 7.96321e10 1.82567 0.912837 0.408324i \(-0.133887\pi\)
0.912837 + 0.408324i \(0.133887\pi\)
\(458\) −6.24756e9 + 2.06168e10i −0.141987 + 0.468553i
\(459\) 0 0
\(460\) 1.80931e10 2.71119e10i 0.404094 0.605521i
\(461\) 2.32904e10 0.515671 0.257836 0.966189i \(-0.416991\pi\)
0.257836 + 0.966189i \(0.416991\pi\)
\(462\) 0 0
\(463\) 3.77433e10i 0.821327i 0.911787 + 0.410664i \(0.134703\pi\)
−0.911787 + 0.410664i \(0.865297\pi\)
\(464\) −2.17585e10 5.23597e10i −0.469416 1.12960i
\(465\) 0 0
\(466\) 1.19621e9 3.94745e9i 0.0253666 0.0837091i
\(467\) 3.59265e10i 0.755349i 0.925938 + 0.377674i \(0.123276\pi\)
−0.925938 + 0.377674i \(0.876724\pi\)
\(468\) 0 0
\(469\) −4.28058e9 −0.0884731
\(470\) 3.26939e10 + 9.90733e9i 0.670000 + 0.203032i
\(471\) 0 0
\(472\) 1.66069e10 + 2.02001e10i 0.334596 + 0.406991i
\(473\) 3.14950e8 0.00629212
\(474\) 0 0
\(475\) 8.36629e9i 0.164346i
\(476\) −3.05576e9 + 4.57895e9i −0.0595238 + 0.0891945i
\(477\) 0 0
\(478\) −5.85774e9 1.77509e9i −0.112207 0.0340024i
\(479\) 4.40663e10i 0.837076i 0.908199 + 0.418538i \(0.137457\pi\)
−0.908199 + 0.418538i \(0.862543\pi\)
\(480\) 0 0
\(481\) 4.44581e10 0.830559
\(482\) 2.55090e10 8.41787e10i 0.472612 1.55960i
\(483\) 0 0
\(484\) −4.56408e10 3.04584e10i −0.831710 0.555041i
\(485\) 9.45466e9 0.170875
\(486\) 0 0
\(487\) 3.99322e10i 0.709916i −0.934882 0.354958i \(-0.884495\pi\)
0.934882 0.354958i \(-0.115505\pi\)
\(488\) 6.43209e9 5.28795e9i 0.113416 0.0932413i
\(489\) 0 0
\(490\) −7.41936e9 + 2.44836e10i −0.128701 + 0.424709i
\(491\) 7.96737e10i 1.37085i 0.728145 + 0.685423i \(0.240383\pi\)
−0.728145 + 0.685423i \(0.759617\pi\)
\(492\) 0 0
\(493\) −8.84483e10 −1.49728
\(494\) −2.89511e10 8.77315e9i −0.486136 0.147315i
\(495\) 0 0
\(496\) 2.60102e10 1.08088e10i 0.429751 0.178587i
\(497\) −9.34907e9 −0.153230
\(498\) 0 0
\(499\) 1.56191e10i 0.251915i −0.992036 0.125957i \(-0.959800\pi\)
0.992036 0.125957i \(-0.0402002\pi\)
\(500\) −4.64984e9 3.10306e9i −0.0743974 0.0496490i
\(501\) 0 0
\(502\) −1.10594e11 3.35136e10i −1.74147 0.527722i
\(503\) 6.13884e10i 0.958990i 0.877544 + 0.479495i \(0.159180\pi\)
−0.877544 + 0.479495i \(0.840820\pi\)
\(504\) 0 0
\(505\) −1.52735e10 −0.234840
\(506\) 2.99563e8 9.88548e8i 0.00456968 0.0150798i
\(507\) 0 0
\(508\) −5.52656e10 + 8.28136e10i −0.829850 + 1.24350i
\(509\) 1.27845e10 0.190464 0.0952322 0.995455i \(-0.469641\pi\)
0.0952322 + 0.995455i \(0.469641\pi\)
\(510\) 0 0
\(511\) 3.78337e9i 0.0554875i
\(512\) −3.25506e10 6.05213e10i −0.473673 0.880701i
\(513\) 0 0
\(514\) −6.92856e9 + 2.28640e10i −0.0992637 + 0.327567i
\(515\) 1.53548e9i 0.0218280i
\(516\) 0 0
\(517\) 1.08261e9 0.0151534
\(518\) −8.11047e9 2.45774e9i −0.112649 0.0341364i
\(519\) 0 0
\(520\) −1.56140e10 + 1.28366e10i −0.213550 + 0.175564i
\(521\) −2.70385e10 −0.366971 −0.183486 0.983022i \(-0.558738\pi\)
−0.183486 + 0.983022i \(0.558738\pi\)
\(522\) 0 0
\(523\) 1.26822e11i 1.69508i 0.530734 + 0.847538i \(0.321916\pi\)
−0.530734 + 0.847538i \(0.678084\pi\)
\(524\) −7.56433e10 + 1.13349e11i −1.00333 + 1.50346i
\(525\) 0 0
\(526\) 7.02128e10 + 2.12768e10i 0.917220 + 0.277948i
\(527\) 4.39375e10i 0.569630i
\(528\) 0 0
\(529\) −1.29193e11 −1.64974
\(530\) 2.01827e10 6.66024e10i 0.255786 0.844085i
\(531\) 0 0
\(532\) 4.79654e9 + 3.20096e9i 0.0598799 + 0.0399608i
\(533\) −5.26208e10 −0.652002
\(534\) 0 0
\(535\) 1.28067e10i 0.156322i
\(536\) −5.29351e10 6.43885e10i −0.641335 0.780098i
\(537\) 0 0
\(538\) 2.64939e10 8.74289e10i 0.316240 1.04358i
\(539\) 8.10738e8i 0.00960562i
\(540\) 0 0
\(541\) 1.86619e10 0.217854 0.108927 0.994050i \(-0.465259\pi\)
0.108927 + 0.994050i \(0.465259\pi\)
\(542\) 1.31940e11 + 3.99823e10i 1.52890 + 0.463308i
\(543\) 0 0
\(544\) −1.06665e11 + 1.06602e10i −1.21794 + 0.121722i
\(545\) 3.77305e10 0.427668
\(546\) 0 0
\(547\) 2.19453e9i 0.0245128i −0.999925 0.0122564i \(-0.996099\pi\)
0.999925 0.0122564i \(-0.00390143\pi\)
\(548\) −1.08887e11 7.26656e10i −1.20741 0.805762i
\(549\) 0 0
\(550\) −1.69541e8 5.13766e7i −0.00185278 0.000561454i
\(551\) 9.26513e10i 1.00518i
\(552\) 0 0
\(553\) −4.29078e9 −0.0458813
\(554\) −2.66548e10 + 8.79601e10i −0.282968 + 0.933784i
\(555\) 0 0
\(556\) −5.73680e10 + 8.59640e10i −0.600303 + 0.899534i
\(557\) 1.97889e10 0.205590 0.102795 0.994703i \(-0.467221\pi\)
0.102795 + 0.994703i \(0.467221\pi\)
\(558\) 0 0
\(559\) 3.92355e10i 0.401820i
\(560\) 3.55808e9 1.47859e9i 0.0361796 0.0150348i
\(561\) 0 0
\(562\) 3.59694e10 1.18698e11i 0.360569 1.18986i
\(563\) 3.05862e10i 0.304433i 0.988347 + 0.152216i \(0.0486411\pi\)
−0.988347 + 0.152216i \(0.951359\pi\)
\(564\) 0 0
\(565\) 4.26471e10 0.418501
\(566\) −5.45200e10 1.65214e10i −0.531240 0.160983i
\(567\) 0 0
\(568\) −1.15614e11 1.40629e11i −1.11075 1.35108i
\(569\) −1.99299e11 −1.90132 −0.950661 0.310230i \(-0.899594\pi\)
−0.950661 + 0.310230i \(0.899594\pi\)
\(570\) 0 0
\(571\) 8.63094e10i 0.811921i 0.913891 + 0.405960i \(0.133063\pi\)
−0.913891 + 0.405960i \(0.866937\pi\)
\(572\) −3.55572e8 + 5.32813e8i −0.00332157 + 0.00497727i
\(573\) 0 0
\(574\) 9.59959e9 + 2.90900e9i 0.0884311 + 0.0267976i
\(575\) 3.55879e10i 0.325560i
\(576\) 0 0
\(577\) −8.87088e10 −0.800320 −0.400160 0.916445i \(-0.631045\pi\)
−0.400160 + 0.916445i \(0.631045\pi\)
\(578\) −1.61261e10 + 5.32156e10i −0.144483 + 0.476791i
\(579\) 0 0
\(580\) 5.14940e10 + 3.43644e10i 0.455035 + 0.303667i
\(581\) 1.07085e10 0.0939772
\(582\) 0 0
\(583\) 2.20543e9i 0.0190906i
\(584\) 5.69095e10 4.67864e10i 0.489252 0.402225i
\(585\) 0 0
\(586\) −2.60712e10 + 8.60340e10i −0.221091 + 0.729591i
\(587\) 1.67947e11i 1.41456i −0.706936 0.707278i \(-0.749923\pi\)
0.706936 0.707278i \(-0.250077\pi\)
\(588\) 0 0
\(589\) −4.60254e10 −0.382416
\(590\) −2.73245e10 8.28024e9i −0.225499 0.0683337i
\(591\) 0 0
\(592\) −6.33275e10 1.52391e11i −0.515591 1.24072i
\(593\) 1.04027e11 0.841252 0.420626 0.907234i \(-0.361810\pi\)
0.420626 + 0.907234i \(0.361810\pi\)
\(594\) 0 0
\(595\) 6.01046e9i 0.0479557i
\(596\) 5.38162e10 + 3.59142e10i 0.426509 + 0.284630i
\(597\) 0 0
\(598\) 1.23150e11 + 3.73186e10i 0.963009 + 0.291824i
\(599\) 1.28089e11i 0.994960i −0.867475 0.497480i \(-0.834259\pi\)
0.867475 0.497480i \(-0.165741\pi\)
\(600\) 0 0
\(601\) −6.55306e10 −0.502281 −0.251140 0.967951i \(-0.580806\pi\)
−0.251140 + 0.967951i \(0.580806\pi\)
\(602\) 2.16902e9 7.15771e9i 0.0165150 0.0544989i
\(603\) 0 0
\(604\) −1.63116e10 + 2.44424e10i −0.122560 + 0.183652i
\(605\) 5.99095e10 0.447172
\(606\) 0 0
\(607\) 2.09475e11i 1.54304i 0.636204 + 0.771521i \(0.280504\pi\)
−0.636204 + 0.771521i \(0.719496\pi\)
\(608\) 1.11667e10 + 1.11734e11i 0.0817168 + 0.817655i
\(609\) 0 0
\(610\) −2.63659e9 + 8.70064e9i −0.0190424 + 0.0628394i
\(611\) 1.34868e11i 0.967707i
\(612\) 0 0
\(613\) 1.26502e11 0.895894 0.447947 0.894060i \(-0.352155\pi\)
0.447947 + 0.894060i \(0.352155\pi\)
\(614\) −1.79678e11 5.44483e10i −1.26421 0.383099i
\(615\) 0 0
\(616\) 9.43219e7 7.75440e7i 0.000655073 0.000538549i
\(617\) 2.25072e11 1.55303 0.776517 0.630096i \(-0.216984\pi\)
0.776517 + 0.630096i \(0.216984\pi\)
\(618\) 0 0
\(619\) 6.03060e10i 0.410769i −0.978681 0.205385i \(-0.934155\pi\)
0.978681 0.205385i \(-0.0658445\pi\)
\(620\) −1.70709e10 + 2.55801e10i −0.115528 + 0.173115i
\(621\) 0 0
\(622\) 1.27210e11 + 3.85489e10i 0.849884 + 0.257543i
\(623\) 5.64383e9i 0.0374647i
\(624\) 0 0
\(625\) 6.10352e9 0.0400000
\(626\) 3.98386e10 1.31466e11i 0.259422 0.856084i
\(627\) 0 0
\(628\) −7.42647e10 4.95605e10i −0.477468 0.318638i
\(629\) −2.57426e11 −1.64456
\(630\) 0 0
\(631\) 1.40158e11i 0.884097i −0.896991 0.442049i \(-0.854252\pi\)
0.896991 0.442049i \(-0.145748\pi\)
\(632\) −5.30613e10 6.45420e10i −0.332590 0.404552i
\(633\) 0 0
\(634\) −1.16520e10 + 3.84512e10i −0.0721179 + 0.237987i
\(635\) 1.08704e11i 0.668573i
\(636\) 0 0
\(637\) −1.00999e11 −0.613424
\(638\) 1.87756e9 + 5.68963e8i 0.0113321 + 0.00343401i
\(639\) 0 0
\(640\) 6.62415e10 + 3.52359e10i 0.394830 + 0.210022i
\(641\) 1.84845e11 1.09490 0.547452 0.836837i \(-0.315598\pi\)
0.547452 + 0.836837i \(0.315598\pi\)
\(642\) 0 0
\(643\) 2.62671e11i 1.53662i −0.640076 0.768312i \(-0.721097\pi\)
0.640076 0.768312i \(-0.278903\pi\)
\(644\) −2.04032e10 1.36160e10i −0.118619 0.0791602i
\(645\) 0 0
\(646\) 1.67636e11 + 5.07992e10i 0.962578 + 0.291693i
\(647\) 2.14765e11i 1.22560i −0.790240 0.612798i \(-0.790044\pi\)
0.790240 0.612798i \(-0.209956\pi\)
\(648\) 0 0
\(649\) −9.04810e8 −0.00510010
\(650\) 6.40034e9 2.11209e10i 0.0358550 0.118320i
\(651\) 0 0
\(652\) −4.20934e10 + 6.30755e10i −0.232929 + 0.349036i
\(653\) −2.41679e11 −1.32919 −0.664593 0.747206i \(-0.731395\pi\)
−0.664593 + 0.747206i \(0.731395\pi\)
\(654\) 0 0
\(655\) 1.48785e11i 0.808341i
\(656\) 7.49547e10 + 1.80371e11i 0.404747 + 0.973982i
\(657\) 0 0
\(658\) 7.45579e9 2.46039e10i 0.0397732 0.131250i
\(659\) 1.45001e11i 0.768828i 0.923161 + 0.384414i \(0.125597\pi\)
−0.923161 + 0.384414i \(0.874403\pi\)
\(660\) 0 0
\(661\) 9.94275e10 0.520836 0.260418 0.965496i \(-0.416140\pi\)
0.260418 + 0.965496i \(0.416140\pi\)
\(662\) 2.12705e11 + 6.44566e10i 1.10750 + 0.335610i
\(663\) 0 0
\(664\) 1.32425e11 + 1.61077e11i 0.681234 + 0.828630i
\(665\) −6.29608e9 −0.0321946
\(666\) 0 0
\(667\) 3.94114e11i 1.99121i
\(668\) 2.21687e10 3.32191e10i 0.111336 0.166833i
\(669\) 0 0
\(670\) 8.70979e10 + 2.63936e10i 0.432224 + 0.130978i
\(671\) 2.88108e8i 0.00142123i
\(672\) 0 0
\(673\) 2.01911e10 0.0984239 0.0492120 0.998788i \(-0.484329\pi\)
0.0492120 + 0.998788i \(0.484329\pi\)
\(674\) −8.11117e10 + 2.67666e11i −0.393047 + 1.29704i
\(675\) 0 0
\(676\) 1.07324e11 + 7.16223e10i 0.513936 + 0.342974i
\(677\) −3.25587e10 −0.154993 −0.0774966 0.996993i \(-0.524693\pi\)
−0.0774966 + 0.996993i \(0.524693\pi\)
\(678\) 0 0
\(679\) 7.11514e9i 0.0334737i
\(680\) 9.04095e10 7.43275e10i 0.422842 0.347627i
\(681\) 0 0
\(682\) −2.82638e8 + 9.32695e8i −0.00130645 + 0.00431124i
\(683\) 2.46509e10i 0.113279i 0.998395 + 0.0566396i \(0.0180386\pi\)
−0.998395 + 0.0566396i \(0.981961\pi\)
\(684\) 0 0
\(685\) 1.42928e11 0.649166
\(686\) 3.69930e10 + 1.12101e10i 0.167041 + 0.0506190i
\(687\) 0 0
\(688\) 1.34489e11 5.58882e10i 0.600252 0.249440i
\(689\) 2.74746e11 1.21914
\(690\) 0 0
\(691\) 3.02518e11i 1.32690i 0.748220 + 0.663451i \(0.230909\pi\)
−0.748220 + 0.663451i \(0.769091\pi\)
\(692\) 9.92363e10 + 6.62252e10i 0.432759 + 0.288801i
\(693\) 0 0
\(694\) −6.25894e9 1.89667e9i −0.0269813 0.00817624i
\(695\) 1.12839e11i 0.483637i
\(696\) 0 0
\(697\) 3.04690e11 1.29100
\(698\) 7.07805e10 2.33573e11i 0.298189 0.984015i
\(699\) 0 0
\(700\) −2.33522e9 + 3.49925e9i −0.00972603 + 0.0145741i
\(701\) 1.07716e11 0.446076 0.223038 0.974810i \(-0.428403\pi\)
0.223038 + 0.974810i \(0.428403\pi\)
\(702\) 0 0
\(703\) 2.69658e11i 1.10406i
\(704\) 2.33284e9 + 4.59856e8i 0.00949715 + 0.00187211i
\(705\) 0 0
\(706\) −1.09652e10 + 3.61849e10i −0.0441366 + 0.145649i
\(707\) 1.14941e10i 0.0460041i
\(708\) 0 0
\(709\) −2.10543e10 −0.0833213 −0.0416606 0.999132i \(-0.513265\pi\)
−0.0416606 + 0.999132i \(0.513265\pi\)
\(710\) 1.90228e11 + 5.76453e10i 0.748584 + 0.226846i
\(711\) 0 0
\(712\) 8.48946e10 6.97936e10i 0.330339 0.271579i
\(713\) 1.95780e11 0.757547
\(714\) 0 0
\(715\) 6.99386e8i 0.00267604i
\(716\) −2.05586e11 + 3.08064e11i −0.782242 + 1.17216i
\(717\) 0 0
\(718\) −2.99610e11 9.07918e10i −1.12735 0.341624i
\(719\) 1.84186e11i 0.689193i −0.938751 0.344597i \(-0.888016\pi\)
0.938751 0.344597i \(-0.111984\pi\)
\(720\) 0 0
\(721\) −1.15553e9 −0.00427602
\(722\) −2.55934e10 + 8.44573e10i −0.0941843 + 0.310805i
\(723\) 0 0
\(724\) 1.23608e11 + 8.24900e10i 0.449877 + 0.300225i
\(725\) −6.75925e10 −0.244651
\(726\) 0 0
\(727\) 1.34820e11i 0.482632i −0.970447 0.241316i \(-0.922421\pi\)
0.970447 0.241316i \(-0.0775791\pi\)
\(728\) 9.66019e9 + 1.17503e10i 0.0343922 + 0.0418336i
\(729\) 0 0
\(730\) −2.33278e10 + 7.69811e10i −0.0821453 + 0.271077i
\(731\) 2.27185e11i 0.795628i
\(732\) 0 0
\(733\) −5.46288e10 −0.189237 −0.0946184 0.995514i \(-0.530163\pi\)
−0.0946184 + 0.995514i \(0.530163\pi\)
\(734\) 3.68500e11 + 1.11668e11i 1.26956 + 0.384719i
\(735\) 0 0
\(736\) −4.75002e10 4.75285e11i −0.161877 1.61973i
\(737\) 2.88411e9 0.00977558
\(738\) 0 0
\(739\) 2.87010e11i 0.962320i −0.876633 0.481160i \(-0.840216\pi\)
0.876633 0.481160i \(-0.159784\pi\)
\(740\) 1.49871e11 + 1.00016e11i 0.499795 + 0.333538i
\(741\) 0 0
\(742\) −5.01218e10 1.51886e10i −0.165353 0.0501074i
\(743\) 1.72722e11i 0.566750i −0.959009 0.283375i \(-0.908546\pi\)
0.959009 0.283375i \(-0.0914541\pi\)
\(744\) 0 0
\(745\) −7.06407e10 −0.229314
\(746\) −7.91090e10 + 2.61057e11i −0.255429 + 0.842908i
\(747\) 0 0
\(748\) 2.05887e9 3.08515e9i 0.00657692 0.00985529i
\(749\) 9.63769e9 0.0306228
\(750\) 0 0
\(751\) 1.75776e11i 0.552586i 0.961073 + 0.276293i \(0.0891060\pi\)
−0.961073 + 0.276293i \(0.910894\pi\)
\(752\) 4.62293e11 1.92110e11i 1.44559 0.600729i
\(753\) 0 0
\(754\) −7.08796e10 + 2.33901e11i −0.219299 + 0.723679i
\(755\) 3.20838e10i 0.0987412i
\(756\) 0 0
\(757\) 2.40268e11 0.731665 0.365833 0.930681i \(-0.380784\pi\)
0.365833 + 0.930681i \(0.380784\pi\)
\(758\) 2.45655e11 + 7.44415e10i 0.744129 + 0.225496i
\(759\) 0 0
\(760\) −7.78595e10 9.47057e10i −0.233376 0.283871i
\(761\) −5.00466e11 −1.49223 −0.746115 0.665817i \(-0.768083\pi\)
−0.746115 + 0.665817i \(0.768083\pi\)
\(762\) 0 0
\(763\) 2.83942e10i 0.0837784i
\(764\) −3.26168e11 + 4.88752e11i −0.957344 + 1.43455i
\(765\) 0 0
\(766\) −1.89707e11 5.74875e10i −0.551021 0.166978i
\(767\) 1.12718e11i 0.325697i
\(768\) 0 0
\(769\) 1.02605e11 0.293402 0.146701 0.989181i \(-0.453135\pi\)
0.146701 + 0.989181i \(0.453135\pi\)
\(770\) −3.86636e7 + 1.27589e8i −0.000109987 + 0.000362952i
\(771\) 0 0
\(772\) 3.03523e11 + 2.02556e11i 0.854522 + 0.570264i
\(773\) −5.93175e11 −1.66136 −0.830682 0.556747i \(-0.812049\pi\)
−0.830682 + 0.556747i \(0.812049\pi\)
\(774\) 0 0
\(775\) 3.35772e10i 0.0930761i
\(776\) 1.07026e11 8.79883e10i 0.295150 0.242649i
\(777\) 0 0
\(778\) −5.91747e10 + 1.95274e11i −0.161517 + 0.533000i
\(779\) 3.19169e11i 0.866704i
\(780\) 0 0
\(781\) 6.29910e9 0.0169307
\(782\) −7.13077e11 2.16086e11i −1.90682 0.577829i
\(783\) 0 0
\(784\) 1.43866e11 + 3.46200e11i 0.380798 + 0.916352i
\(785\) 9.74821e10 0.256712
\(786\) 0 0
\(787\) 1.93252e11i 0.503761i −0.967758 0.251880i \(-0.918951\pi\)
0.967758 0.251880i \(-0.0810489\pi\)
\(788\) 3.02531e11 + 2.01894e11i 0.784630 + 0.523622i
\(789\) 0 0
\(790\) 8.73055e10 + 2.64565e10i 0.224147 + 0.0679241i
\(791\) 3.20942e10i 0.0819825i
\(792\) 0 0
\(793\) −3.58917e10 −0.0907613
\(794\) 9.05879e10 2.98937e11i 0.227923 0.752139i
\(795\) 0 0
\(796\) 2.70043e11 4.04651e11i 0.672638 1.00793i
\(797\) 4.34328e11 1.07643 0.538213 0.842809i \(-0.319099\pi\)
0.538213 + 0.842809i \(0.319099\pi\)
\(798\) 0 0
\(799\) 7.80925e11i 1.91612i
\(800\) −8.15139e10 + 8.14654e9i −0.199009 + 0.0198890i
\(801\) 0 0
\(802\) 1.13636e11 3.74994e11i 0.274674 0.906415i
\(803\) 2.54911e9i 0.00613093i
\(804\) 0 0
\(805\) 2.67818e10 0.0637759
\(806\) −1.16192e11 3.52101e10i −0.275320 0.0834310i
\(807\) 0 0
\(808\) −1.72894e11 + 1.42140e11i −0.405635 + 0.333481i
\(809\) −7.57515e11 −1.76847 −0.884234 0.467044i \(-0.845319\pi\)
−0.884234 + 0.467044i \(0.845319\pi\)
\(810\) 0 0
\(811\) 1.15001e11i 0.265838i −0.991127 0.132919i \(-0.957565\pi\)
0.991127 0.132919i \(-0.0424350\pi\)
\(812\) 2.58611e10 3.87520e10i 0.0594870 0.0891394i
\(813\) 0 0
\(814\) 5.46457e9 + 1.65595e9i 0.0124468 + 0.00377180i
\(815\) 8.27948e10i 0.187660i
\(816\) 0 0
\(817\) −2.37981e11 −0.534138
\(818\) −8.34061e10 + 2.75238e11i −0.186288 + 0.614744i
\(819\) 0 0
\(820\) −1.77389e11 1.18380e11i −0.392347 0.261832i
\(821\) 2.18337e11 0.480568 0.240284 0.970703i \(-0.422760\pi\)
0.240284 + 0.970703i \(0.422760\pi\)
\(822\) 0 0
\(823\) 2.44330e11i 0.532572i 0.963894 + 0.266286i \(0.0857965\pi\)
−0.963894 + 0.266286i \(0.914203\pi\)
\(824\) −1.42897e10 1.73815e10i −0.0309966 0.0377032i
\(825\) 0 0
\(826\) −6.23132e9 + 2.05632e10i −0.0133863 + 0.0441743i
\(827\) 6.25569e11i 1.33738i 0.743543 + 0.668688i \(0.233144\pi\)
−0.743543 + 0.668688i \(0.766856\pi\)
\(828\) 0 0
\(829\) −7.91341e11 −1.67550 −0.837752 0.546051i \(-0.816131\pi\)
−0.837752 + 0.546051i \(0.816131\pi\)
\(830\) −2.17888e11 6.60272e10i −0.459114 0.139127i
\(831\) 0 0
\(832\) −5.72874e10 + 2.90618e11i −0.119554 + 0.606497i
\(833\) 5.84816e11 1.21462
\(834\) 0 0
\(835\) 4.36044e10i 0.0896984i
\(836\) −3.23175e9 2.15670e9i −0.00661626 0.00441535i
\(837\) 0 0
\(838\) −5.35735e11 1.62346e11i −1.08636 0.329204i
\(839\) 1.97673e11i 0.398933i −0.979905 0.199466i \(-0.936079\pi\)
0.979905 0.199466i \(-0.0639209\pi\)
\(840\) 0 0
\(841\) 2.48297e11 0.496350
\(842\) −5.45094e10 + 1.79879e11i −0.108448 + 0.357876i
\(843\) 0 0
\(844\) −2.38659e11 + 3.57623e11i −0.470336 + 0.704783i
\(845\) −1.40876e11 −0.276319
\(846\) 0 0
\(847\) 4.50851e10i 0.0875990i
\(848\) −3.91357e11 9.41760e11i −0.756815 1.82120i
\(849\) 0 0
\(850\) −3.70599e10 + 1.22296e11i −0.0709951 + 0.234281i
\(851\) 1.14705e12i 2.18708i
\(852\) 0 0
\(853\) 9.60505e11 1.81428 0.907138 0.420833i \(-0.138262\pi\)
0.907138 + 0.420833i \(0.138262\pi\)
\(854\) 6.54770e9 + 1.98417e9i 0.0123100 + 0.00373033i
\(855\) 0 0
\(856\) 1.19183e11 + 1.44970e11i 0.221983 + 0.270012i
\(857\) −1.83889e10 −0.0340904 −0.0170452 0.999855i \(-0.505426\pi\)
−0.0170452 + 0.999855i \(0.505426\pi\)
\(858\) 0 0
\(859\) 2.58648e11i 0.475048i −0.971382 0.237524i \(-0.923664\pi\)
0.971382 0.237524i \(-0.0763358\pi\)
\(860\) −8.82673e10 + 1.32266e11i −0.161364 + 0.241798i
\(861\) 0 0
\(862\) 6.30729e11 + 1.91132e11i 1.14239 + 0.346182i
\(863\) 4.58083e11i 0.825849i 0.910765 + 0.412925i \(0.135493\pi\)
−0.910765 + 0.412925i \(0.864507\pi\)
\(864\) 0 0
\(865\) −1.30261e11 −0.232674
\(866\) 6.44420e10 2.12656e11i 0.114577 0.378100i
\(867\) 0 0
\(868\) 1.92504e10 + 1.28467e10i 0.0339126 + 0.0226315i
\(869\) 2.89099e9 0.00506953
\(870\) 0 0
\(871\) 3.59294e11i 0.624277i
\(872\) 4.27106e11 3.51133e11i 0.738703 0.607303i
\(873\) 0 0
\(874\) −2.26354e11 + 7.46961e11i −0.387921 + 1.28012i
\(875\) 4.59322e9i 0.00783583i
\(876\) 0 0
\(877\) −9.94220e11 −1.68068 −0.840338 0.542062i \(-0.817644\pi\)
−0.840338 + 0.542062i \(0.817644\pi\)
\(878\) −3.47249e11 1.05228e11i −0.584337 0.177074i
\(879\) 0 0
\(880\) −2.39732e9 + 9.96227e8i −0.00399756 + 0.00166122i
\(881\) −4.02463e11 −0.668071 −0.334036 0.942560i \(-0.608411\pi\)
−0.334036 + 0.942560i \(0.608411\pi\)
\(882\) 0 0
\(883\) 7.19682e11i 1.18385i 0.805992 + 0.591926i \(0.201632\pi\)
−0.805992 + 0.591926i \(0.798368\pi\)
\(884\) 3.84338e11 + 2.56488e11i 0.629368 + 0.420008i
\(885\) 0 0
\(886\) −6.25024e11 1.89403e11i −1.01429 0.307363i
\(887\) 4.82885e11i 0.780097i −0.920794 0.390049i \(-0.872458\pi\)
0.920794 0.390049i \(-0.127542\pi\)
\(888\) 0 0
\(889\) −8.18053e10 −0.130971
\(890\) −3.47993e10 + 1.14836e11i −0.0554639 + 0.183029i
\(891\) 0 0
\(892\) −1.57364e11 + 2.35804e11i −0.248568 + 0.372470i
\(893\) −8.18034e11 −1.28637
\(894\) 0 0
\(895\) 4.04373e11i 0.630218i
\(896\) 2.65169e10 4.98502e10i 0.0411425 0.0773455i
\(897\) 0 0
\(898\) 1.92975e11 6.36811e11i 0.296753 0.979277i
\(899\) 3.71846e11i 0.569278i
\(900\) 0 0
\(901\) −1.59086e12 −2.41398
\(902\) −6.46789e9 1.95999e9i −0.00977094 0.00296092i
\(903\) 0 0
\(904\) 4.82762e11 3.96889e11i 0.722869 0.594285i
\(905\) −1.62252e11 −0.241878
\(906\) 0 0
\(907\) 1.11961e12i 1.65439i 0.561917 + 0.827194i \(0.310064\pi\)
−0.561917 + 0.827194i \(0.689936\pi\)
\(908\) −5.90588e11 + 8.84976e11i −0.868842 + 1.30193i
\(909\) 0 0
\(910\) −1.58946e10 4.81660e9i −0.0231784 0.00702384i
\(911\) 1.90411e10i 0.0276451i 0.999904 + 0.0138225i \(0.00439999\pi\)
−0.999904 + 0.0138225i \(0.995600\pi\)
\(912\) 0 0
\(913\) −7.21501e9 −0.0103837
\(914\) −3.69506e11 + 1.21936e12i −0.529464 + 1.74721i
\(915\) 0 0
\(916\) −2.86702e11 1.91330e11i −0.407238 0.271770i
\(917\) −1.11969e11 −0.158351
\(918\) 0 0
\(919\) 1.16760e11i 0.163694i −0.996645 0.0818470i \(-0.973918\pi\)
0.996645 0.0818470i \(-0.0260819\pi\)
\(920\) 3.31193e11 + 4.02852e11i 0.462307 + 0.562334i
\(921\) 0 0
\(922\) −1.08071e11 + 3.56631e11i −0.149550 + 0.493509i
\(923\) 7.84722e11i 1.08121i
\(924\) 0 0
\(925\) −1.96726e11 −0.268716
\(926\) −5.77940e11 1.75135e11i −0.786030 0.238193i
\(927\) 0 0
\(928\) 9.02714e11 9.02177e10i 1.21719 0.121647i
\(929\) 8.06361e11 1.08260 0.541298 0.840831i \(-0.317933\pi\)
0.541298 + 0.840831i \(0.317933\pi\)
\(930\) 0 0
\(931\) 6.12606e11i 0.815422i
\(932\) 5.48942e10 + 3.66336e10i 0.0727550 + 0.0485529i
\(933\) 0 0
\(934\) −5.50120e11 1.66705e11i −0.722887 0.219059i
\(935\) 4.04965e9i 0.00529873i
\(936\) 0 0
\(937\) 1.43350e12 1.85968 0.929842 0.367959i \(-0.119943\pi\)
0.929842 + 0.367959i \(0.119943\pi\)
\(938\) 1.98626e10 6.55458e10i 0.0256581 0.0846708i
\(939\) 0 0
\(940\) −3.03410e11 + 4.54649e11i −0.388614 + 0.582325i
\(941\) 1.41766e12 1.80806 0.904029 0.427472i \(-0.140596\pi\)
0.904029 + 0.427472i \(0.140596\pi\)
\(942\) 0 0
\(943\) 1.35766e12i 1.71690i
\(944\) −3.86370e11 + 1.60560e11i −0.486537 + 0.202185i
\(945\) 0 0
\(946\) −1.46142e9 + 4.82263e9i −0.00182478 + 0.00602170i
\(947\) 7.59493e11i 0.944331i −0.881510 0.472165i \(-0.843473\pi\)
0.881510 0.472165i \(-0.156527\pi\)
\(948\) 0 0
\(949\) −3.17560e11 −0.391527
\(950\) 1.28108e11 + 3.88209e10i 0.157283 + 0.0476619i
\(951\) 0 0
\(952\) −5.59354e10 6.80379e10i −0.0680987 0.0828330i
\(953\) −3.72618e11 −0.451743 −0.225872 0.974157i \(-0.572523\pi\)
−0.225872 + 0.974157i \(0.572523\pi\)
\(954\) 0 0
\(955\) 6.41550e11i 0.771289i
\(956\) 5.43617e10 8.14592e10i 0.0650821 0.0975234i
\(957\) 0 0
\(958\) −6.74760e11 2.04475e11i −0.801101 0.242760i
\(959\) 1.07561e11i 0.127169i
\(960\) 0 0
\(961\) 6.68173e11 0.783421
\(962\) −2.06293e11 + 6.80759e11i −0.240870 + 0.794865i
\(963\) 0 0
\(964\) 1.17061e12 + 7.81206e11i 1.35552 + 0.904601i
\(965\) −3.98414e11 −0.459436
\(966\) 0 0
\(967\) 7.07203e11i 0.808794i 0.914584 + 0.404397i \(0.132519\pi\)
−0.914584 + 0.404397i \(0.867481\pi\)
\(968\) 6.78171e11 5.57538e11i 0.772392 0.634999i
\(969\) 0 0
\(970\) −4.38712e10 + 1.44773e11i −0.0495555 + 0.163532i
\(971\) 1.48456e12i 1.67001i 0.550240 + 0.835007i \(0.314536\pi\)
−0.550240 + 0.835007i \(0.685464\pi\)
\(972\) 0 0
\(973\) −8.49173e10 −0.0947425
\(974\) 6.11457e11 + 1.85292e11i 0.679407 + 0.205883i
\(975\) 0 0
\(976\) 5.11252e10 + 1.23027e11i 0.0563424 + 0.135582i
\(977\) 4.31329e10 0.0473402 0.0236701 0.999720i \(-0.492465\pi\)
0.0236701 + 0.999720i \(0.492465\pi\)
\(978\) 0 0
\(979\) 3.80263e9i 0.00413955i
\(980\) −3.40476e11 2.27216e11i −0.369132 0.246340i
\(981\) 0 0
\(982\) −1.21999e12 3.69699e11i −1.31193 0.397559i
\(983\) 1.13842e12i 1.21923i 0.792696 + 0.609617i \(0.208677\pi\)
−0.792696 + 0.609617i \(0.791323\pi\)
\(984\) 0 0
\(985\) −3.97111e11 −0.421859
\(986\) 4.10414e11 1.35435e12i 0.434225 1.43293i
\(987\) 0 0
\(988\) 2.68676e11 4.02602e11i 0.281968 0.422520i
\(989\) 1.01231e12 1.05810
\(990\) 0 0
\(991\) 6.27241e11i 0.650339i 0.945656 + 0.325170i \(0.105421\pi\)
−0.945656 + 0.325170i \(0.894579\pi\)
\(992\) 4.48165e10 + 4.48432e11i 0.0462797 + 0.463073i
\(993\) 0 0
\(994\) 4.33812e10 1.43156e11i 0.0444381 0.146644i
\(995\) 5.31157e11i 0.541914i
\(996\) 0 0
\(997\) 2.64260e11 0.267455 0.133728 0.991018i \(-0.457305\pi\)
0.133728 + 0.991018i \(0.457305\pi\)
\(998\) 2.39165e11 + 7.24750e10i 0.241088 + 0.0730578i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 180.9.c.a.91.8 16
3.2 odd 2 20.9.b.a.11.9 16
4.3 odd 2 inner 180.9.c.a.91.7 16
12.11 even 2 20.9.b.a.11.10 yes 16
15.2 even 4 100.9.d.c.99.30 32
15.8 even 4 100.9.d.c.99.3 32
15.14 odd 2 100.9.b.d.51.8 16
24.5 odd 2 320.9.b.d.191.12 16
24.11 even 2 320.9.b.d.191.5 16
60.23 odd 4 100.9.d.c.99.29 32
60.47 odd 4 100.9.d.c.99.4 32
60.59 even 2 100.9.b.d.51.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.9.b.a.11.9 16 3.2 odd 2
20.9.b.a.11.10 yes 16 12.11 even 2
100.9.b.d.51.7 16 60.59 even 2
100.9.b.d.51.8 16 15.14 odd 2
100.9.d.c.99.3 32 15.8 even 4
100.9.d.c.99.4 32 60.47 odd 4
100.9.d.c.99.29 32 60.23 odd 4
100.9.d.c.99.30 32 15.2 even 4
180.9.c.a.91.7 16 4.3 odd 2 inner
180.9.c.a.91.8 16 1.1 even 1 trivial
320.9.b.d.191.5 16 24.11 even 2
320.9.b.d.191.12 16 24.5 odd 2