Properties

Label 100.9.b.d.51.8
Level $100$
Weight $9$
Character 100.51
Analytic conductor $40.738$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [100,9,Mod(51,100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(100, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("100.51"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 100 = 2^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 100.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(40.7378610061\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 5 x^{15} + 26 x^{14} - 834 x^{13} + 4390 x^{12} - 61783 x^{11} + 466168 x^{10} + \cdots + 206161212459445 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{61}\cdot 5^{16} \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 51.8
Root \(-2.93811 - 7.65619i\) of defining polynomial
Character \(\chi\) \(=\) 100.51
Dual form 100.9.b.d.51.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.64016 + 15.3124i) q^{2} +75.7492i q^{3} +(-212.938 - 142.104i) q^{4} +(-1159.90 - 351.488i) q^{6} +210.345i q^{7} +(3164.01 - 2601.20i) q^{8} +823.060 q^{9} -141.724i q^{11} +(10764.2 - 16129.9i) q^{12} +17655.5 q^{13} +(-3220.88 - 976.035i) q^{14} +(25149.0 + 60518.5i) q^{16} +102231. q^{17} +(-3819.13 + 12603.0i) q^{18} -107088. i q^{19} -15933.5 q^{21} +(2170.13 + 657.620i) q^{22} +455526. i q^{23} +(197039. + 239671. i) q^{24} +(-81924.3 + 270348. i) q^{26} +559337. i q^{27} +(29890.8 - 44790.4i) q^{28} +865184. q^{29} -429788. i q^{31} +(-1.04338e6 + 104276. i) q^{32} +10735.4 q^{33} +(-474366. + 1.56539e6i) q^{34} +(-175261. - 116960. i) q^{36} +2.51809e6 q^{37} +(1.63978e6 + 496908. i) q^{38} +1.33739e6i q^{39} -2.98042e6 q^{41} +(73933.8 - 243979. i) q^{42} +2.22228e6i q^{43} +(-20139.5 + 30178.3i) q^{44} +(-6.97518e6 - 2.11371e6i) q^{46} -7.63886e6i q^{47} +(-4.58423e6 + 1.90502e6i) q^{48} +5.72056e6 q^{49} +7.74388e6i q^{51} +(-3.75952e6 - 2.50891e6i) q^{52} -1.55615e7 q^{53} +(-8.56477e6 - 2.59541e6i) q^{54} +(547149. + 665534. i) q^{56} +8.11187e6 q^{57} +(-4.01459e6 + 1.32480e7i) q^{58} -6.38433e6i q^{59} +2.03289e6 q^{61} +(6.58108e6 + 1.99429e6i) q^{62} +173127. i q^{63} +(3.24473e6 - 1.64605e7i) q^{64} +(-49814.2 + 164385. i) q^{66} +2.03503e7i q^{67} +(-2.17688e7 - 1.45274e7i) q^{68} -3.45057e7 q^{69} +4.44463e7i q^{71} +(2.60417e6 - 2.14094e6i) q^{72} -1.79865e7 q^{73} +(-1.16843e7 + 3.85579e7i) q^{74} +(-1.52177e7 + 2.28032e7i) q^{76} +29810.9 q^{77} +(-2.04786e7 - 6.20570e6i) q^{78} -2.03988e7i q^{79} -3.69692e7 q^{81} +(1.38296e7 - 4.56374e7i) q^{82} +5.09090e7i q^{83} +(3.39284e6 + 2.26421e6i) q^{84} +(-3.40284e7 - 1.03117e7i) q^{86} +6.55370e7i q^{87} +(-368651. - 448415. i) q^{88} -2.68313e7 q^{89} +3.71375e6i q^{91} +(6.47319e7 - 9.69986e7i) q^{92} +3.25561e7 q^{93} +(1.16969e8 + 3.54456e7i) q^{94} +(-7.89880e6 - 7.90351e7i) q^{96} -3.38260e7 q^{97} +(-2.65443e7 + 8.75953e7i) q^{98} -116647. i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{2} - 52 q^{4} + 4368 q^{6} + 14184 q^{8} - 38800 q^{9} + 64040 q^{12} - 51392 q^{13} + 68472 q^{14} - 81424 q^{16} - 27552 q^{17} + 616994 q^{18} + 414496 q^{21} + 389120 q^{22} + 163792 q^{24}+ \cdots + 285387714 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/100\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(77\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.64016 + 15.3124i −0.290010 + 0.957024i
\(3\) 75.7492i 0.935175i 0.883947 + 0.467588i \(0.154877\pi\)
−0.883947 + 0.467588i \(0.845123\pi\)
\(4\) −212.938 142.104i −0.831788 0.555093i
\(5\) 0 0
\(6\) −1159.90 351.488i −0.894985 0.271210i
\(7\) 210.345i 0.0876072i 0.999040 + 0.0438036i \(0.0139476\pi\)
−0.999040 + 0.0438036i \(0.986052\pi\)
\(8\) 3164.01 2601.20i 0.772464 0.635059i
\(9\) 823.060 0.125447
\(10\) 0 0
\(11\) 141.724i 0.00967991i −0.999988 0.00483996i \(-0.998459\pi\)
0.999988 0.00483996i \(-0.00154061\pi\)
\(12\) 10764.2 16129.9i 0.519109 0.777868i
\(13\) 17655.5 0.618168 0.309084 0.951035i \(-0.399978\pi\)
0.309084 + 0.951035i \(0.399978\pi\)
\(14\) −3220.88 976.035i −0.0838422 0.0254070i
\(15\) 0 0
\(16\) 25149.0 + 60518.5i 0.383744 + 0.923440i
\(17\) 102231. 1.22401 0.612005 0.790854i \(-0.290363\pi\)
0.612005 + 0.790854i \(0.290363\pi\)
\(18\) −3819.13 + 12603.0i −0.0363810 + 0.120056i
\(19\) 107088.i 0.821728i −0.911697 0.410864i \(-0.865227\pi\)
0.911697 0.410864i \(-0.134773\pi\)
\(20\) 0 0
\(21\) −15933.5 −0.0819281
\(22\) 2170.13 + 657.620i 0.00926391 + 0.00280727i
\(23\) 455526.i 1.62780i 0.581004 + 0.813901i \(0.302660\pi\)
−0.581004 + 0.813901i \(0.697340\pi\)
\(24\) 197039. + 239671.i 0.593891 + 0.722389i
\(25\) 0 0
\(26\) −81924.3 + 270348.i −0.179275 + 0.591601i
\(27\) 559337.i 1.05249i
\(28\) 29890.8 44790.4i 0.0486302 0.0728707i
\(29\) 865184. 1.22325 0.611627 0.791146i \(-0.290515\pi\)
0.611627 + 0.791146i \(0.290515\pi\)
\(30\) 0 0
\(31\) 429788.i 0.465380i −0.972551 0.232690i \(-0.925247\pi\)
0.972551 0.232690i \(-0.0747528\pi\)
\(32\) −1.04338e6 + 104276.i −0.995043 + 0.0994450i
\(33\) 10735.4 0.00905241
\(34\) −474366. + 1.56539e6i −0.354975 + 1.17141i
\(35\) 0 0
\(36\) −175261. 116960.i −0.104346 0.0696349i
\(37\) 2.51809e6 1.34358 0.671791 0.740741i \(-0.265525\pi\)
0.671791 + 0.740741i \(0.265525\pi\)
\(38\) 1.63978e6 + 496908.i 0.786414 + 0.238310i
\(39\) 1.33739e6i 0.578095i
\(40\) 0 0
\(41\) −2.98042e6 −1.05473 −0.527366 0.849638i \(-0.676820\pi\)
−0.527366 + 0.849638i \(0.676820\pi\)
\(42\) 73933.8 243979.i 0.0237600 0.0784071i
\(43\) 2.22228e6i 0.650018i 0.945711 + 0.325009i \(0.105367\pi\)
−0.945711 + 0.325009i \(0.894633\pi\)
\(44\) −20139.5 + 30178.3i −0.00537325 + 0.00805164i
\(45\) 0 0
\(46\) −6.97518e6 2.11371e6i −1.55784 0.472079i
\(47\) 7.63886e6i 1.56544i −0.622372 0.782722i \(-0.713831\pi\)
0.622372 0.782722i \(-0.286169\pi\)
\(48\) −4.58423e6 + 1.90502e6i −0.863578 + 0.358868i
\(49\) 5.72056e6 0.992325
\(50\) 0 0
\(51\) 7.74388e6i 1.14466i
\(52\) −3.75952e6 2.50891e6i −0.514185 0.343141i
\(53\) −1.55615e7 −1.97219 −0.986094 0.166186i \(-0.946855\pi\)
−0.986094 + 0.166186i \(0.946855\pi\)
\(54\) −8.56477e6 2.59541e6i −1.00726 0.305233i
\(55\) 0 0
\(56\) 547149. + 665534.i 0.0556357 + 0.0676734i
\(57\) 8.11187e6 0.768460
\(58\) −4.01459e6 + 1.32480e7i −0.354756 + 1.17068i
\(59\) 6.38433e6i 0.526874i −0.964677 0.263437i \(-0.915144\pi\)
0.964677 0.263437i \(-0.0848562\pi\)
\(60\) 0 0
\(61\) 2.03289e6 0.146823 0.0734116 0.997302i \(-0.476611\pi\)
0.0734116 + 0.997302i \(0.476611\pi\)
\(62\) 6.58108e6 + 1.99429e6i 0.445380 + 0.134965i
\(63\) 173127.i 0.0109901i
\(64\) 3.24473e6 1.64605e7i 0.193401 0.981120i
\(65\) 0 0
\(66\) −49814.2 + 164385.i −0.00262529 + 0.00866337i
\(67\) 2.03503e7i 1.00988i 0.863154 + 0.504941i \(0.168486\pi\)
−0.863154 + 0.504941i \(0.831514\pi\)
\(68\) −2.17688e7 1.45274e7i −1.01812 0.679439i
\(69\) −3.45057e7 −1.52228
\(70\) 0 0
\(71\) 4.44463e7i 1.74905i 0.484979 + 0.874526i \(0.338827\pi\)
−0.484979 + 0.874526i \(0.661173\pi\)
\(72\) 2.60417e6 2.14094e6i 0.0969036 0.0796664i
\(73\) −1.79865e7 −0.633366 −0.316683 0.948531i \(-0.602569\pi\)
−0.316683 + 0.948531i \(0.602569\pi\)
\(74\) −1.16843e7 + 3.85579e7i −0.389652 + 1.28584i
\(75\) 0 0
\(76\) −1.52177e7 + 2.28032e7i −0.456136 + 0.683504i
\(77\) 29810.9 0.000848031
\(78\) −2.04786e7 6.20570e6i −0.553251 0.167653i
\(79\) 2.03988e7i 0.523716i −0.965106 0.261858i \(-0.915665\pi\)
0.965106 0.261858i \(-0.0843352\pi\)
\(80\) 0 0
\(81\) −3.69692e7 −0.858816
\(82\) 1.38296e7 4.56374e7i 0.305883 1.00940i
\(83\) 5.09090e7i 1.07271i 0.843992 + 0.536355i \(0.180199\pi\)
−0.843992 + 0.536355i \(0.819801\pi\)
\(84\) 3.39284e6 + 2.26421e6i 0.0681469 + 0.0454777i
\(85\) 0 0
\(86\) −3.40284e7 1.03117e7i −0.622082 0.188512i
\(87\) 6.55370e7i 1.14396i
\(88\) −368651. 448415.i −0.00614731 0.00747738i
\(89\) −2.68313e7 −0.427644 −0.213822 0.976873i \(-0.568591\pi\)
−0.213822 + 0.976873i \(0.568591\pi\)
\(90\) 0 0
\(91\) 3.71375e6i 0.0541560i
\(92\) 6.47319e7 9.69986e7i 0.903581 1.35399i
\(93\) 3.25561e7 0.435212
\(94\) 1.16969e8 + 3.54456e7i 1.49817 + 0.453994i
\(95\) 0 0
\(96\) −7.89880e6 7.90351e7i −0.0929985 0.930540i
\(97\) −3.38260e7 −0.382089 −0.191044 0.981581i \(-0.561187\pi\)
−0.191044 + 0.981581i \(0.561187\pi\)
\(98\) −2.65443e7 + 8.75953e7i −0.287784 + 0.949678i
\(99\) 116647.i 0.00121432i
\(100\) 0 0
\(101\) 5.46440e7 0.525118 0.262559 0.964916i \(-0.415434\pi\)
0.262559 + 0.964916i \(0.415434\pi\)
\(102\) −1.18577e8 3.59329e7i −1.09547 0.331964i
\(103\) 5.49350e6i 0.0488090i 0.999702 + 0.0244045i \(0.00776897\pi\)
−0.999702 + 0.0244045i \(0.992231\pi\)
\(104\) 5.58622e7 4.59255e7i 0.477513 0.392573i
\(105\) 0 0
\(106\) 7.22080e7 2.38284e8i 0.571955 1.88743i
\(107\) 4.58185e7i 0.349547i 0.984609 + 0.174773i \(0.0559193\pi\)
−0.984609 + 0.174773i \(0.944081\pi\)
\(108\) 7.94838e7 1.19104e8i 0.584230 0.875449i
\(109\) 1.34989e8 0.956295 0.478147 0.878280i \(-0.341308\pi\)
0.478147 + 0.878280i \(0.341308\pi\)
\(110\) 0 0
\(111\) 1.90743e8i 1.25648i
\(112\) −1.27298e7 + 5.28997e6i −0.0809000 + 0.0336187i
\(113\) 1.52579e8 0.935796 0.467898 0.883783i \(-0.345011\pi\)
0.467898 + 0.883783i \(0.345011\pi\)
\(114\) −3.76404e7 + 1.24212e8i −0.222861 + 0.735434i
\(115\) 0 0
\(116\) −1.84230e8 1.22946e8i −1.01749 0.679020i
\(117\) 1.45315e7 0.0775475
\(118\) 9.77592e7 + 2.96243e7i 0.504231 + 0.152799i
\(119\) 2.15037e7i 0.107232i
\(120\) 0 0
\(121\) 2.14339e8 0.999906
\(122\) −9.43293e6 + 3.11284e7i −0.0425802 + 0.140513i
\(123\) 2.25765e8i 0.986360i
\(124\) −6.10746e7 + 9.15182e7i −0.258329 + 0.387098i
\(125\) 0 0
\(126\) −2.65098e6 803335.i −0.0105178 0.00318724i
\(127\) 3.88910e8i 1.49498i 0.664275 + 0.747488i \(0.268740\pi\)
−0.664275 + 0.747488i \(0.731260\pi\)
\(128\) 2.36993e8 + 1.26064e8i 0.882866 + 0.469624i
\(129\) −1.68336e8 −0.607880
\(130\) 0 0
\(131\) 5.32310e8i 1.80750i 0.428056 + 0.903752i \(0.359199\pi\)
−0.428056 + 0.903752i \(0.640801\pi\)
\(132\) −2.28598e6 1.52555e6i −0.00752969 0.00502493i
\(133\) 2.25255e7 0.0719894
\(134\) −3.11611e8 9.44285e7i −0.966482 0.292876i
\(135\) 0 0
\(136\) 3.23459e8 2.65922e8i 0.945504 0.777318i
\(137\) 5.11356e8 1.45158 0.725790 0.687916i \(-0.241474\pi\)
0.725790 + 0.687916i \(0.241474\pi\)
\(138\) 1.60112e8 5.28364e8i 0.441476 1.45686i
\(139\) 4.03705e8i 1.08145i −0.841201 0.540723i \(-0.818151\pi\)
0.841201 0.540723i \(-0.181849\pi\)
\(140\) 0 0
\(141\) 5.78638e8 1.46396
\(142\) −6.80579e8 2.06238e8i −1.67388 0.507243i
\(143\) 2.50220e6i 0.00598381i
\(144\) 2.06992e7 + 4.98104e7i 0.0481396 + 0.115843i
\(145\) 0 0
\(146\) 8.34602e7 2.75416e8i 0.183683 0.606146i
\(147\) 4.33327e8i 0.927998i
\(148\) −5.36196e8 3.57830e8i −1.11758 0.745813i
\(149\) 2.52732e8 0.512761 0.256381 0.966576i \(-0.417470\pi\)
0.256381 + 0.966576i \(0.417470\pi\)
\(150\) 0 0
\(151\) 1.14787e8i 0.220792i −0.993888 0.110396i \(-0.964788\pi\)
0.993888 0.110396i \(-0.0352119\pi\)
\(152\) −2.78559e8 3.38829e8i −0.521846 0.634756i
\(153\) 8.41419e7 0.153549
\(154\) −138327. + 456475.i −0.000245937 + 0.000811585i
\(155\) 0 0
\(156\) 1.90048e8 2.84781e8i 0.320897 0.480853i
\(157\) −3.48763e8 −0.574026 −0.287013 0.957927i \(-0.592662\pi\)
−0.287013 + 0.957927i \(0.592662\pi\)
\(158\) 3.12354e8 + 9.46536e7i 0.501209 + 0.151883i
\(159\) 1.17877e9i 1.84434i
\(160\) 0 0
\(161\) −9.58175e7 −0.142607
\(162\) 1.71543e8 5.66086e8i 0.249065 0.821907i
\(163\) 2.96216e8i 0.419622i 0.977742 + 0.209811i \(0.0672848\pi\)
−0.977742 + 0.209811i \(0.932715\pi\)
\(164\) 6.34645e8 + 4.23529e8i 0.877314 + 0.585475i
\(165\) 0 0
\(166\) −7.79538e8 2.36226e8i −1.02661 0.311097i
\(167\) 1.56004e8i 0.200572i 0.994959 + 0.100286i \(0.0319757\pi\)
−0.994959 + 0.100286i \(0.968024\pi\)
\(168\) −5.04137e7 + 4.14461e7i −0.0632865 + 0.0520292i
\(169\) −5.04014e8 −0.617868
\(170\) 0 0
\(171\) 8.81402e7i 0.103084i
\(172\) 3.15795e8 4.73208e8i 0.360820 0.540677i
\(173\) −4.66034e8 −0.520276 −0.260138 0.965572i \(-0.583768\pi\)
−0.260138 + 0.965572i \(0.583768\pi\)
\(174\) −1.00353e9 3.04102e8i −1.09479 0.331759i
\(175\) 0 0
\(176\) 8.57691e6 3.56421e6i 0.00893882 0.00371461i
\(177\) 4.83608e8 0.492720
\(178\) 1.24502e8 4.10851e8i 0.124021 0.409265i
\(179\) 1.44673e9i 1.40921i 0.709600 + 0.704605i \(0.248876\pi\)
−0.709600 + 0.704605i \(0.751124\pi\)
\(180\) 0 0
\(181\) −5.80491e8 −0.540855 −0.270428 0.962740i \(-0.587165\pi\)
−0.270428 + 0.962740i \(0.587165\pi\)
\(182\) −5.68663e7 1.72324e7i −0.0518286 0.0157058i
\(183\) 1.53990e8i 0.137305i
\(184\) 1.18491e9 + 1.44129e9i 1.03375 + 1.25742i
\(185\) 0 0
\(186\) −1.51066e8 + 4.98512e8i −0.126216 + 0.416508i
\(187\) 1.44885e7i 0.0118483i
\(188\) −1.08551e9 + 1.62660e9i −0.868966 + 1.30212i
\(189\) −1.17654e8 −0.0922058
\(190\) 0 0
\(191\) 2.29528e9i 1.72465i 0.506351 + 0.862327i \(0.330994\pi\)
−0.506351 + 0.862327i \(0.669006\pi\)
\(192\) 1.24687e9 + 2.45786e8i 0.917519 + 0.180864i
\(193\) 1.42541e9 1.02733 0.513665 0.857991i \(-0.328287\pi\)
0.513665 + 0.857991i \(0.328287\pi\)
\(194\) 1.56958e8 5.17957e8i 0.110810 0.365668i
\(195\) 0 0
\(196\) −1.21812e9 8.12913e8i −0.825404 0.550833i
\(197\) −1.42075e9 −0.943305 −0.471652 0.881785i \(-0.656342\pi\)
−0.471652 + 0.881785i \(0.656342\pi\)
\(198\) 1.78614e6 + 541261.i 0.00116213 + 0.000352165i
\(199\) 1.90032e9i 1.21176i 0.795557 + 0.605878i \(0.207178\pi\)
−0.795557 + 0.605878i \(0.792822\pi\)
\(200\) 0 0
\(201\) −1.54152e9 −0.944417
\(202\) −2.53557e8 + 8.36729e8i −0.152289 + 0.502550i
\(203\) 1.81987e8i 0.107166i
\(204\) 1.10044e9 1.64897e9i 0.635395 0.952118i
\(205\) 0 0
\(206\) −8.41185e7 2.54907e7i −0.0467114 0.0141551i
\(207\) 3.74925e8i 0.204203i
\(208\) 4.44019e8 + 1.06848e9i 0.237218 + 0.570841i
\(209\) −1.51770e7 −0.00795426
\(210\) 0 0
\(211\) 1.67947e9i 0.847311i −0.905823 0.423655i \(-0.860747\pi\)
0.905823 0.423655i \(-0.139253\pi\)
\(212\) 3.31364e9 + 2.21135e9i 1.64044 + 1.09475i
\(213\) −3.36677e9 −1.63567
\(214\) −7.01590e8 2.12605e8i −0.334525 0.101372i
\(215\) 0 0
\(216\) 1.45495e9 + 1.76975e9i 0.668393 + 0.813011i
\(217\) 9.04039e7 0.0407707
\(218\) −6.26370e8 + 2.06700e9i −0.277335 + 0.915197i
\(219\) 1.36246e9i 0.592308i
\(220\) 0 0
\(221\) 1.80493e9 0.756644
\(222\) −2.92073e9 8.85079e8i −1.20249 0.364393i
\(223\) 1.10738e9i 0.447795i 0.974613 + 0.223897i \(0.0718780\pi\)
−0.974613 + 0.223897i \(0.928122\pi\)
\(224\) −2.19339e7 2.19469e8i −0.00871210 0.0871730i
\(225\) 0 0
\(226\) −7.07991e8 + 2.33635e9i −0.271390 + 0.895579i
\(227\) 4.15603e9i 1.56522i −0.622512 0.782610i \(-0.713888\pi\)
0.622512 0.782610i \(-0.286112\pi\)
\(228\) −1.72732e9 1.15273e9i −0.639196 0.426567i
\(229\) 1.34641e9 0.489594 0.244797 0.969574i \(-0.421279\pi\)
0.244797 + 0.969574i \(0.421279\pi\)
\(230\) 0 0
\(231\) 2.25815e6i 0.000793057i
\(232\) 2.73745e9 2.25052e9i 0.944920 0.776838i
\(233\) −2.57794e8 −0.0874681 −0.0437341 0.999043i \(-0.513925\pi\)
−0.0437341 + 0.999043i \(0.513925\pi\)
\(234\) −6.74286e7 + 2.22512e8i −0.0224896 + 0.0742148i
\(235\) 0 0
\(236\) −9.07237e8 + 1.35946e9i −0.292464 + 0.438248i
\(237\) 1.54519e9 0.489766
\(238\) −3.29273e8 9.97806e7i −0.102624 0.0310984i
\(239\) 3.82549e8i 0.117245i −0.998280 0.0586227i \(-0.981329\pi\)
0.998280 0.0586227i \(-0.0186709\pi\)
\(240\) 0 0
\(241\) −5.49743e9 −1.62964 −0.814820 0.579714i \(-0.803164\pi\)
−0.814820 + 0.579714i \(0.803164\pi\)
\(242\) −9.94566e8 + 3.28204e9i −0.289983 + 0.956934i
\(243\) 8.69420e8i 0.249347i
\(244\) −4.32879e8 2.88881e8i −0.122126 0.0815005i
\(245\) 0 0
\(246\) 3.45699e9 + 1.04758e9i 0.943970 + 0.286054i
\(247\) 1.89070e9i 0.507966i
\(248\) −1.11797e9 1.35986e9i −0.295544 0.359490i
\(249\) −3.85632e9 −1.00317
\(250\) 0 0
\(251\) 7.22250e9i 1.81967i −0.414971 0.909835i \(-0.636208\pi\)
0.414971 0.909835i \(-0.363792\pi\)
\(252\) 2.46019e7 3.68652e7i 0.00610052 0.00914143i
\(253\) 6.45587e7 0.0157570
\(254\) −5.95514e9 1.80460e9i −1.43073 0.433558i
\(255\) 0 0
\(256\) −3.03002e9 + 3.04396e9i −0.705482 + 0.708728i
\(257\) 1.49317e9 0.342277 0.171138 0.985247i \(-0.445256\pi\)
0.171138 + 0.985247i \(0.445256\pi\)
\(258\) 7.81106e8 2.57762e9i 0.176291 0.581756i
\(259\) 5.29667e8i 0.117707i
\(260\) 0 0
\(261\) 7.12099e8 0.153454
\(262\) −8.15093e9 2.47000e9i −1.72982 0.524195i
\(263\) 4.58536e9i 0.958409i −0.877703 0.479205i \(-0.840925\pi\)
0.877703 0.479205i \(-0.159075\pi\)
\(264\) 3.39671e7 2.79250e7i 0.00699266 0.00574881i
\(265\) 0 0
\(266\) −1.04522e8 + 3.44919e8i −0.0208776 + 0.0688955i
\(267\) 2.03245e9i 0.399922i
\(268\) 2.89185e9 4.33334e9i 0.560579 0.840009i
\(269\) 5.70969e9 1.09044 0.545222 0.838292i \(-0.316445\pi\)
0.545222 + 0.838292i \(0.316445\pi\)
\(270\) 0 0
\(271\) 8.61657e9i 1.59756i −0.601623 0.798780i \(-0.705479\pi\)
0.601623 0.798780i \(-0.294521\pi\)
\(272\) 2.57100e9 + 6.18684e9i 0.469706 + 1.13030i
\(273\) −2.81313e8 −0.0506453
\(274\) −2.37277e9 + 7.83008e9i −0.420973 + 1.38920i
\(275\) 0 0
\(276\) 7.34757e9 + 4.90339e9i 1.26621 + 0.845007i
\(277\) −5.74438e9 −0.975717 −0.487858 0.872923i \(-0.662222\pi\)
−0.487858 + 0.872923i \(0.662222\pi\)
\(278\) 6.18168e9 + 1.87326e9i 1.03497 + 0.313630i
\(279\) 3.53742e8i 0.0583807i
\(280\) 0 0
\(281\) 7.75176e9 1.24330 0.621648 0.783296i \(-0.286463\pi\)
0.621648 + 0.783296i \(0.286463\pi\)
\(282\) −2.68497e9 + 8.86032e9i −0.424564 + 1.40105i
\(283\) 3.56052e9i 0.555096i −0.960712 0.277548i \(-0.910478\pi\)
0.960712 0.277548i \(-0.0895217\pi\)
\(284\) 6.31599e9 9.46431e9i 0.970886 1.45484i
\(285\) 0 0
\(286\) 3.83146e7 + 1.16106e7i 0.00572665 + 0.00173537i
\(287\) 6.26917e8i 0.0924022i
\(288\) −8.58763e8 + 8.58251e7i −0.124826 + 0.0124751i
\(289\) 3.47533e9 0.498201
\(290\) 0 0
\(291\) 2.56229e9i 0.357320i
\(292\) 3.83000e9 + 2.55595e9i 0.526826 + 0.351577i
\(293\) 5.61859e9 0.762355 0.381177 0.924502i \(-0.375519\pi\)
0.381177 + 0.924502i \(0.375519\pi\)
\(294\) −6.63527e9 2.01071e9i −0.888116 0.269129i
\(295\) 0 0
\(296\) 7.96726e9 6.55005e9i 1.03787 0.853253i
\(297\) 7.92712e7 0.0101880
\(298\) −1.17272e9 + 3.86993e9i −0.148706 + 0.490725i
\(299\) 8.04253e9i 1.00625i
\(300\) 0 0
\(301\) −4.67446e8 −0.0569463
\(302\) 1.75766e9 + 5.32628e8i 0.211303 + 0.0640319i
\(303\) 4.13924e9i 0.491077i
\(304\) 6.48084e9 2.69317e9i 0.758817 0.315333i
\(305\) 0 0
\(306\) −3.90432e8 + 1.28841e9i −0.0445307 + 0.146950i
\(307\) 1.17341e10i 1.32099i −0.750832 0.660493i \(-0.770347\pi\)
0.750832 0.660493i \(-0.229653\pi\)
\(308\) −6.34786e6 4.23623e6i −0.000705382 0.000470736i
\(309\) −4.16128e8 −0.0456450
\(310\) 0 0
\(311\) 8.30766e9i 0.888050i 0.896014 + 0.444025i \(0.146450\pi\)
−0.896014 + 0.444025i \(0.853550\pi\)
\(312\) 3.47882e9 + 4.23152e9i 0.367124 + 0.446558i
\(313\) 8.58561e9 0.894528 0.447264 0.894402i \(-0.352399\pi\)
0.447264 + 0.894402i \(0.352399\pi\)
\(314\) 1.61831e9 5.34038e9i 0.166473 0.549356i
\(315\) 0 0
\(316\) −2.89874e9 + 4.34367e9i −0.290711 + 0.435621i
\(317\) 2.51112e9 0.248674 0.124337 0.992240i \(-0.460320\pi\)
0.124337 + 0.992240i \(0.460320\pi\)
\(318\) 1.80498e10 + 5.46969e9i 1.76508 + 0.534878i
\(319\) 1.22617e8i 0.0118410i
\(320\) 0 0
\(321\) −3.47071e9 −0.326888
\(322\) 4.44609e8 1.46719e9i 0.0413575 0.136478i
\(323\) 1.09477e10i 1.00580i
\(324\) 7.87214e9 + 5.25346e9i 0.714353 + 0.476722i
\(325\) 0 0
\(326\) −4.53577e9 1.37449e9i −0.401588 0.121694i
\(327\) 1.02253e10i 0.894303i
\(328\) −9.43009e9 + 7.75267e9i −0.814743 + 0.669817i
\(329\) 1.60680e9 0.137144
\(330\) 0 0
\(331\) 1.38910e10i 1.15724i −0.815599 0.578618i \(-0.803592\pi\)
0.815599 0.578618i \(-0.196408\pi\)
\(332\) 7.23437e9 1.08405e10i 0.595454 0.892268i
\(333\) 2.07254e9 0.168549
\(334\) −2.38879e9 7.23883e8i −0.191952 0.0581678i
\(335\) 0 0
\(336\) −4.00711e8 9.64270e8i −0.0314394 0.0756557i
\(337\) −1.74804e10 −1.35529 −0.677643 0.735391i \(-0.736999\pi\)
−0.677643 + 0.735391i \(0.736999\pi\)
\(338\) 2.33871e9 7.71766e9i 0.179188 0.591315i
\(339\) 1.15577e10i 0.875133i
\(340\) 0 0
\(341\) −6.09112e7 −0.00450484
\(342\) 1.34964e9 + 4.08985e8i 0.0986535 + 0.0298953i
\(343\) 2.41589e9i 0.174542i
\(344\) 5.78060e9 + 7.03133e9i 0.412799 + 0.502115i
\(345\) 0 0
\(346\) 2.16247e9 7.13609e9i 0.150885 0.497916i
\(347\) 4.08751e8i 0.0281930i 0.999901 + 0.0140965i \(0.00448720\pi\)
−0.999901 + 0.0140965i \(0.995513\pi\)
\(348\) 9.31306e9 1.39553e10i 0.635002 0.951530i
\(349\) −1.52539e10 −1.02820 −0.514102 0.857729i \(-0.671875\pi\)
−0.514102 + 0.857729i \(0.671875\pi\)
\(350\) 0 0
\(351\) 9.87536e9i 0.650616i
\(352\) 1.47783e7 + 1.47871e8i 0.000962619 + 0.00963193i
\(353\) 2.36311e9 0.152190 0.0760950 0.997101i \(-0.475755\pi\)
0.0760950 + 0.997101i \(0.475755\pi\)
\(354\) −2.24402e9 + 7.40518e9i −0.142894 + 0.471544i
\(355\) 0 0
\(356\) 5.71340e9 + 3.81283e9i 0.355709 + 0.237382i
\(357\) −1.62889e9 −0.100281
\(358\) −2.21529e10 6.71306e9i −1.34865 0.408685i
\(359\) 1.95665e10i 1.17797i −0.808143 0.588987i \(-0.799527\pi\)
0.808143 0.588987i \(-0.200473\pi\)
\(360\) 0 0
\(361\) 5.51562e9 0.324762
\(362\) 2.69357e9 8.88870e9i 0.156854 0.517611i
\(363\) 1.62360e10i 0.935088i
\(364\) 5.27737e8 7.90797e8i 0.0300616 0.0450463i
\(365\) 0 0
\(366\) −2.35795e9 7.14537e8i −0.131404 0.0398199i
\(367\) 2.40655e10i 1.32657i 0.748367 + 0.663285i \(0.230838\pi\)
−0.748367 + 0.663285i \(0.769162\pi\)
\(368\) −2.75677e10 + 1.14560e10i −1.50318 + 0.624659i
\(369\) −2.45307e9 −0.132313
\(370\) 0 0
\(371\) 3.27329e9i 0.172778i
\(372\) −6.93243e9 4.62635e9i −0.362004 0.241583i
\(373\) −1.70488e10 −0.880760 −0.440380 0.897811i \(-0.645156\pi\)
−0.440380 + 0.897811i \(0.645156\pi\)
\(374\) 2.21853e8 + 6.72289e7i 0.0113391 + 0.00343613i
\(375\) 0 0
\(376\) −1.98702e10 2.41695e10i −0.994148 1.20925i
\(377\) 1.52753e10 0.756176
\(378\) 5.45932e8 1.80156e9i 0.0267406 0.0882431i
\(379\) 1.60429e10i 0.777545i −0.921334 0.388772i \(-0.872899\pi\)
0.921334 0.388772i \(-0.127101\pi\)
\(380\) 0 0
\(381\) −2.94596e10 −1.39806
\(382\) −3.51462e10 1.06505e10i −1.65054 0.500167i
\(383\) 1.23891e10i 0.575765i 0.957666 + 0.287883i \(0.0929513\pi\)
−0.957666 + 0.287883i \(0.907049\pi\)
\(384\) −9.54923e9 + 1.79520e10i −0.439181 + 0.825635i
\(385\) 0 0
\(386\) −6.61413e9 + 2.18264e10i −0.297936 + 0.983180i
\(387\) 1.82907e9i 0.0815430i
\(388\) 7.20284e9 + 4.80681e9i 0.317817 + 0.212095i
\(389\) −1.27527e10 −0.556935 −0.278467 0.960446i \(-0.589826\pi\)
−0.278467 + 0.960446i \(0.589826\pi\)
\(390\) 0 0
\(391\) 4.65686e10i 1.99245i
\(392\) 1.80999e10 1.48803e10i 0.766535 0.630184i
\(393\) −4.03221e10 −1.69033
\(394\) 6.59250e9 2.17550e10i 0.273568 0.902765i
\(395\) 0 0
\(396\) −1.65760e7 + 2.48386e7i −0.000674060 + 0.00101006i
\(397\) 1.95226e10 0.785914 0.392957 0.919557i \(-0.371452\pi\)
0.392957 + 0.919557i \(0.371452\pi\)
\(398\) −2.90985e10 8.81781e9i −1.15968 0.351422i
\(399\) 1.70629e9i 0.0673227i
\(400\) 0 0
\(401\) 2.44896e10 0.947119 0.473559 0.880762i \(-0.342969\pi\)
0.473559 + 0.880762i \(0.342969\pi\)
\(402\) 7.15288e9 2.36043e10i 0.273891 0.903830i
\(403\) 7.58813e9i 0.287683i
\(404\) −1.16358e10 7.76512e9i −0.436787 0.291489i
\(405\) 0 0
\(406\) −2.78666e9 8.44450e8i −0.102560 0.0310792i
\(407\) 3.56873e8i 0.0130058i
\(408\) 2.01434e10 + 2.45017e10i 0.726929 + 0.884212i
\(409\) 1.79748e10 0.642350 0.321175 0.947020i \(-0.395922\pi\)
0.321175 + 0.947020i \(0.395922\pi\)
\(410\) 0 0
\(411\) 3.87348e10i 1.35748i
\(412\) 7.80647e8 1.16977e9i 0.0270935 0.0405988i
\(413\) 1.34291e9 0.0461580
\(414\) −5.74099e9 1.73971e9i −0.195427 0.0592210i
\(415\) 0 0
\(416\) −1.84214e10 + 1.84104e9i −0.615104 + 0.0614737i
\(417\) 3.05803e10 1.01134
\(418\) 7.04236e7 2.32395e8i 0.00230682 0.00761241i
\(419\) 3.49871e10i 1.13515i −0.823323 0.567573i \(-0.807883\pi\)
0.823323 0.567573i \(-0.192117\pi\)
\(420\) 0 0
\(421\) 1.17473e10 0.373947 0.186973 0.982365i \(-0.440132\pi\)
0.186973 + 0.982365i \(0.440132\pi\)
\(422\) 2.57167e10 + 7.79302e9i 0.810896 + 0.245729i
\(423\) 6.28724e9i 0.196381i
\(424\) −4.92368e10 + 4.04786e10i −1.52344 + 1.25246i
\(425\) 0 0
\(426\) 1.56224e10 5.15533e10i 0.474361 1.56537i
\(427\) 4.27608e8i 0.0128628i
\(428\) 6.51098e9 9.75649e9i 0.194031 0.290749i
\(429\) 1.89540e8 0.00559591
\(430\) 0 0
\(431\) 4.11908e10i 1.19369i 0.802357 + 0.596845i \(0.203579\pi\)
−0.802357 + 0.596845i \(0.796421\pi\)
\(432\) −3.38502e10 + 1.40668e10i −0.971911 + 0.403887i
\(433\) 1.38879e10 0.395079 0.197540 0.980295i \(-0.436705\pi\)
0.197540 + 0.980295i \(0.436705\pi\)
\(434\) −4.19488e8 + 1.38430e9i −0.0118239 + 0.0390185i
\(435\) 0 0
\(436\) −2.87442e10 1.91824e10i −0.795435 0.530833i
\(437\) 4.87815e10 1.33761
\(438\) 2.08625e10 + 6.32204e9i 0.566853 + 0.171775i
\(439\) 2.26777e10i 0.610577i 0.952260 + 0.305289i \(0.0987530\pi\)
−0.952260 + 0.305289i \(0.901247\pi\)
\(440\) 0 0
\(441\) 4.70836e9 0.124485
\(442\) −8.37517e9 + 2.76378e10i −0.219434 + 0.724126i
\(443\) 4.08182e10i 1.05984i 0.848049 + 0.529919i \(0.177778\pi\)
−0.848049 + 0.529919i \(0.822222\pi\)
\(444\) 2.71053e10 4.06164e10i 0.697466 1.04513i
\(445\) 0 0
\(446\) −1.69567e10 5.13844e9i −0.428550 0.129865i
\(447\) 1.91442e10i 0.479521i
\(448\) 3.46237e9 + 6.82514e8i 0.0859532 + 0.0169434i
\(449\) 4.15880e10 1.02325 0.511626 0.859208i \(-0.329043\pi\)
0.511626 + 0.859208i \(0.329043\pi\)
\(450\) 0 0
\(451\) 4.22396e8i 0.0102097i
\(452\) −3.24898e10 2.16821e10i −0.778384 0.519454i
\(453\) 8.69500e9 0.206479
\(454\) 6.36387e10 + 1.92847e10i 1.49795 + 0.453929i
\(455\) 0 0
\(456\) 2.56660e10 2.11006e10i 0.593608 0.488017i
\(457\) −7.96321e10 −1.82567 −0.912837 0.408324i \(-0.866113\pi\)
−0.912837 + 0.408324i \(0.866113\pi\)
\(458\) −6.24756e9 + 2.06168e10i −0.141987 + 0.468553i
\(459\) 5.71813e10i 1.28826i
\(460\) 0 0
\(461\) −2.32904e10 −0.515671 −0.257836 0.966189i \(-0.583009\pi\)
−0.257836 + 0.966189i \(0.583009\pi\)
\(462\) −3.45776e7 1.04782e7i −0.000758974 0.000229995i
\(463\) 3.77433e10i 0.821327i −0.911787 0.410664i \(-0.865297\pi\)
0.911787 0.410664i \(-0.134703\pi\)
\(464\) 2.17585e10 + 5.23597e10i 0.469416 + 1.12960i
\(465\) 0 0
\(466\) 1.19621e9 3.94745e9i 0.0253666 0.0837091i
\(467\) 3.59265e10i 0.755349i 0.925938 + 0.377674i \(0.123276\pi\)
−0.925938 + 0.377674i \(0.876724\pi\)
\(468\) −3.09431e9 2.06499e9i −0.0645031 0.0430461i
\(469\) −4.28058e9 −0.0884731
\(470\) 0 0
\(471\) 2.64185e10i 0.536814i
\(472\) −1.66069e10 2.02001e10i −0.334596 0.406991i
\(473\) 3.14950e8 0.00629212
\(474\) −7.16994e9 + 2.36605e10i −0.142037 + 0.468718i
\(475\) 0 0
\(476\) 3.05576e9 4.57895e9i 0.0595238 0.0891945i
\(477\) −1.28081e10 −0.247406
\(478\) 5.85774e9 + 1.77509e9i 0.112207 + 0.0340024i
\(479\) 4.40663e10i 0.837076i −0.908199 0.418538i \(-0.862543\pi\)
0.908199 0.418538i \(-0.137457\pi\)
\(480\) 0 0
\(481\) 4.44581e10 0.830559
\(482\) 2.55090e10 8.41787e10i 0.472612 1.55960i
\(483\) 7.25810e9i 0.133363i
\(484\) −4.56408e10 3.04584e10i −0.831710 0.555041i
\(485\) 0 0
\(486\) −1.33129e10 4.03425e9i −0.238631 0.0723132i
\(487\) 3.99322e10i 0.709916i 0.934882 + 0.354958i \(0.115505\pi\)
−0.934882 + 0.354958i \(0.884495\pi\)
\(488\) 6.43209e9 5.28795e9i 0.113416 0.0932413i
\(489\) −2.24381e10 −0.392420
\(490\) 0 0
\(491\) 7.96737e10i 1.37085i −0.728145 0.685423i \(-0.759617\pi\)
0.728145 0.685423i \(-0.240383\pi\)
\(492\) −3.20820e10 + 4.80738e10i −0.547521 + 0.820443i
\(493\) 8.84483e10 1.49728
\(494\) 2.89511e10 + 8.77315e9i 0.486136 + 0.147315i
\(495\) 0 0
\(496\) 2.60102e10 1.08088e10i 0.429751 0.178587i
\(497\) −9.34907e9 −0.153230
\(498\) 1.78939e10 5.90494e10i 0.290930 0.960060i
\(499\) 1.56191e10i 0.251915i −0.992036 0.125957i \(-0.959800\pi\)
0.992036 0.125957i \(-0.0402002\pi\)
\(500\) 0 0
\(501\) −1.18172e10 −0.187570
\(502\) 1.10594e11 + 3.35136e10i 1.74147 + 0.527722i
\(503\) 6.13884e10i 0.958990i 0.877544 + 0.479495i \(0.159180\pi\)
−0.877544 + 0.479495i \(0.840820\pi\)
\(504\) 4.50337e8 + 5.47775e8i 0.00697935 + 0.00848945i
\(505\) 0 0
\(506\) −2.99563e8 + 9.88548e8i −0.00456968 + 0.0150798i
\(507\) 3.81787e10i 0.577815i
\(508\) 5.52656e10 8.28136e10i 0.829850 1.24350i
\(509\) −1.27845e10 −0.190464 −0.0952322 0.995455i \(-0.530359\pi\)
−0.0952322 + 0.995455i \(0.530359\pi\)
\(510\) 0 0
\(511\) 3.78337e9i 0.0554875i
\(512\) −3.25506e10 6.05213e10i −0.473673 0.880701i
\(513\) 5.98985e10 0.864861
\(514\) −6.92856e9 + 2.28640e10i −0.0992637 + 0.327567i
\(515\) 0 0
\(516\) 3.58451e10 + 2.39212e10i 0.505628 + 0.337430i
\(517\) −1.08261e9 −0.0151534
\(518\) −8.11047e9 2.45774e9i −0.112649 0.0341364i
\(519\) 3.53017e10i 0.486549i
\(520\) 0 0
\(521\) 2.70385e10 0.366971 0.183486 0.983022i \(-0.441262\pi\)
0.183486 + 0.983022i \(0.441262\pi\)
\(522\) −3.30425e9 + 1.09039e10i −0.0445032 + 0.146859i
\(523\) 1.26822e11i 1.69508i −0.530734 0.847538i \(-0.678084\pi\)
0.530734 0.847538i \(-0.321916\pi\)
\(524\) 7.56433e10 1.13349e11i 1.00333 1.50346i
\(525\) 0 0
\(526\) 7.02128e10 + 2.12768e10i 0.917220 + 0.277948i
\(527\) 4.39375e10i 0.569630i
\(528\) 2.69986e8 + 6.49694e8i 0.00347381 + 0.00835936i
\(529\) −1.29193e11 −1.64974
\(530\) 0 0
\(531\) 5.25468e9i 0.0660950i
\(532\) −4.79654e9 3.20096e9i −0.0598799 0.0399608i
\(533\) −5.26208e10 −0.652002
\(534\) 3.11217e10 + 9.43090e9i 0.382735 + 0.115981i
\(535\) 0 0
\(536\) 5.29351e10 + 6.43885e10i 0.641335 + 0.780098i
\(537\) −1.09589e11 −1.31786
\(538\) −2.64939e10 + 8.74289e10i −0.316240 + 1.04358i
\(539\) 8.10738e8i 0.00960562i
\(540\) 0 0
\(541\) 1.86619e10 0.217854 0.108927 0.994050i \(-0.465259\pi\)
0.108927 + 0.994050i \(0.465259\pi\)
\(542\) 1.31940e11 + 3.99823e10i 1.52890 + 0.463308i
\(543\) 4.39717e10i 0.505795i
\(544\) −1.06665e11 + 1.06602e10i −1.21794 + 0.121722i
\(545\) 0 0
\(546\) 1.30534e9 4.30757e9i 0.0146877 0.0484688i
\(547\) 2.19453e9i 0.0245128i 0.999925 + 0.0122564i \(0.00390143\pi\)
−0.999925 + 0.0122564i \(0.996099\pi\)
\(548\) −1.08887e11 7.26656e10i −1.20741 0.805762i
\(549\) 1.67319e9 0.0184186
\(550\) 0 0
\(551\) 9.26513e10i 1.00518i
\(552\) −1.09176e11 + 8.97562e10i −1.17591 + 0.966737i
\(553\) 4.29078e9 0.0458813
\(554\) 2.66548e10 8.79601e10i 0.282968 0.933784i
\(555\) 0 0
\(556\) −5.73680e10 + 8.59640e10i −0.600303 + 0.899534i
\(557\) 1.97889e10 0.205590 0.102795 0.994703i \(-0.467221\pi\)
0.102795 + 0.994703i \(0.467221\pi\)
\(558\) 5.41663e9 + 1.64142e9i 0.0558717 + 0.0169310i
\(559\) 3.92355e10i 0.401820i
\(560\) 0 0
\(561\) 1.09749e9 0.0110803
\(562\) −3.59694e10 + 1.18698e11i −0.360569 + 1.18986i
\(563\) 3.05862e10i 0.304433i 0.988347 + 0.152216i \(0.0486411\pi\)
−0.988347 + 0.152216i \(0.951359\pi\)
\(564\) −1.23214e11 8.22266e10i −1.21771 0.812636i
\(565\) 0 0
\(566\) 5.45200e10 + 1.65214e10i 0.531240 + 0.160983i
\(567\) 7.77629e9i 0.0752385i
\(568\) 1.15614e11 + 1.40629e11i 1.11075 + 1.35108i
\(569\) 1.99299e11 1.90132 0.950661 0.310230i \(-0.100406\pi\)
0.950661 + 0.310230i \(0.100406\pi\)
\(570\) 0 0
\(571\) 8.63094e10i 0.811921i 0.913891 + 0.405960i \(0.133063\pi\)
−0.913891 + 0.405960i \(0.866937\pi\)
\(572\) −3.55572e8 + 5.32813e8i −0.00332157 + 0.00497727i
\(573\) −1.73866e11 −1.61285
\(574\) 9.59959e9 + 2.90900e9i 0.0884311 + 0.0267976i
\(575\) 0 0
\(576\) 2.67061e9 1.35479e10i 0.0242617 0.123079i
\(577\) 8.87088e10 0.800320 0.400160 0.916445i \(-0.368955\pi\)
0.400160 + 0.916445i \(0.368955\pi\)
\(578\) −1.61261e10 + 5.32156e10i −0.144483 + 0.476791i
\(579\) 1.07974e11i 0.960734i
\(580\) 0 0
\(581\) −1.07085e10 −0.0939772
\(582\) 3.92348e10 + 1.18895e10i 0.341963 + 0.103626i
\(583\) 2.20543e9i 0.0190906i
\(584\) −5.69095e10 + 4.67864e10i −0.489252 + 0.402225i
\(585\) 0 0
\(586\) −2.60712e10 + 8.60340e10i −0.221091 + 0.729591i
\(587\) 1.67947e11i 1.41456i −0.706936 0.707278i \(-0.749923\pi\)
0.706936 0.707278i \(-0.250077\pi\)
\(588\) 6.15775e10 9.22718e10i 0.515125 0.771898i
\(589\) −4.60254e10 −0.382416
\(590\) 0 0
\(591\) 1.07620e11i 0.882155i
\(592\) 6.33275e10 + 1.52391e11i 0.515591 + 1.24072i
\(593\) 1.04027e11 0.841252 0.420626 0.907234i \(-0.361810\pi\)
0.420626 + 0.907234i \(0.361810\pi\)
\(594\) −3.67831e8 + 1.21383e9i −0.00295463 + 0.00975017i
\(595\) 0 0
\(596\) −5.38162e10 3.59142e10i −0.426509 0.284630i
\(597\) −1.43948e11 −1.13320
\(598\) −1.23150e11 3.73186e10i −0.963009 0.291824i
\(599\) 1.28089e11i 0.994960i 0.867475 + 0.497480i \(0.165741\pi\)
−0.867475 + 0.497480i \(0.834259\pi\)
\(600\) 0 0
\(601\) −6.55306e10 −0.502281 −0.251140 0.967951i \(-0.580806\pi\)
−0.251140 + 0.967951i \(0.580806\pi\)
\(602\) 2.16902e9 7.15771e9i 0.0165150 0.0544989i
\(603\) 1.67495e10i 0.126687i
\(604\) −1.63116e10 + 2.44424e10i −0.122560 + 0.183652i
\(605\) 0 0
\(606\) −6.33816e10 1.92067e10i −0.469973 0.142417i
\(607\) 2.09475e11i 1.54304i −0.636204 0.771521i \(-0.719496\pi\)
0.636204 0.771521i \(-0.280504\pi\)
\(608\) 1.11667e10 + 1.11734e11i 0.0817168 + 0.817655i
\(609\) −1.37854e10 −0.100219
\(610\) 0 0
\(611\) 1.34868e11i 0.967707i
\(612\) −1.79170e10 1.19569e10i −0.127720 0.0852339i
\(613\) −1.26502e11 −0.895894 −0.447947 0.894060i \(-0.647845\pi\)
−0.447947 + 0.894060i \(0.647845\pi\)
\(614\) 1.79678e11 + 5.44483e10i 1.26421 + 0.383099i
\(615\) 0 0
\(616\) 9.43219e7 7.75440e7i 0.000655073 0.000538549i
\(617\) 2.25072e11 1.55303 0.776517 0.630096i \(-0.216984\pi\)
0.776517 + 0.630096i \(0.216984\pi\)
\(618\) 1.93090e9 6.37191e9i 0.0132375 0.0436833i
\(619\) 6.03060e10i 0.410769i −0.978681 0.205385i \(-0.934155\pi\)
0.978681 0.205385i \(-0.0658445\pi\)
\(620\) 0 0
\(621\) −2.54792e11 −1.71325
\(622\) −1.27210e11 3.85489e10i −0.849884 0.257543i
\(623\) 5.64383e9i 0.0374647i
\(624\) −8.09369e10 + 3.36340e10i −0.533836 + 0.221840i
\(625\) 0 0
\(626\) −3.98386e10 + 1.31466e11i −0.259422 + 0.856084i
\(627\) 1.14964e9i 0.00743863i
\(628\) 7.42647e10 + 4.95605e10i 0.477468 + 0.318638i
\(629\) 2.57426e11 1.64456
\(630\) 0 0
\(631\) 1.40158e11i 0.884097i −0.896991 0.442049i \(-0.854252\pi\)
0.896991 0.442049i \(-0.145748\pi\)
\(632\) −5.30613e10 6.45420e10i −0.332590 0.404552i
\(633\) 1.27219e11 0.792384
\(634\) −1.16520e10 + 3.84512e10i −0.0721179 + 0.237987i
\(635\) 0 0
\(636\) −1.67508e11 + 2.51005e11i −1.02378 + 1.53410i
\(637\) 1.00999e11 0.613424
\(638\) 1.87756e9 + 5.68963e8i 0.0113321 + 0.00343401i
\(639\) 3.65820e10i 0.219414i
\(640\) 0 0
\(641\) −1.84845e11 −1.09490 −0.547452 0.836837i \(-0.684402\pi\)
−0.547452 + 0.836837i \(0.684402\pi\)
\(642\) 1.61047e10 5.31449e10i 0.0948007 0.312839i
\(643\) 2.62671e11i 1.53662i 0.640076 + 0.768312i \(0.278903\pi\)
−0.640076 + 0.768312i \(0.721097\pi\)
\(644\) 2.04032e10 + 1.36160e10i 0.118619 + 0.0791602i
\(645\) 0 0
\(646\) 1.67636e11 + 5.07992e10i 0.962578 + 0.291693i
\(647\) 2.14765e11i 1.22560i −0.790240 0.612798i \(-0.790044\pi\)
0.790240 0.612798i \(-0.209956\pi\)
\(648\) −1.16971e11 + 9.61643e10i −0.663404 + 0.545398i
\(649\) −9.04810e8 −0.00510010
\(650\) 0 0
\(651\) 6.84802e9i 0.0381277i
\(652\) 4.20934e10 6.30755e10i 0.232929 0.349036i
\(653\) −2.41679e11 −1.32919 −0.664593 0.747206i \(-0.731395\pi\)
−0.664593 + 0.747206i \(0.731395\pi\)
\(654\) −1.56574e11 4.74470e10i −0.855869 0.259357i
\(655\) 0 0
\(656\) −7.49547e10 1.80371e11i −0.404747 0.973982i
\(657\) −1.48040e10 −0.0794541
\(658\) −7.45579e9 + 2.46039e10i −0.0397732 + 0.131250i
\(659\) 1.45001e11i 0.768828i −0.923161 0.384414i \(-0.874403\pi\)
0.923161 0.384414i \(-0.125597\pi\)
\(660\) 0 0
\(661\) 9.94275e10 0.520836 0.260418 0.965496i \(-0.416140\pi\)
0.260418 + 0.965496i \(0.416140\pi\)
\(662\) 2.12705e11 + 6.44566e10i 1.10750 + 0.335610i
\(663\) 1.36722e11i 0.707595i
\(664\) 1.32425e11 + 1.61077e11i 0.681234 + 0.828630i
\(665\) 0 0
\(666\) −9.61691e9 + 3.17355e10i −0.0488808 + 0.161305i
\(667\) 3.94114e11i 1.99121i
\(668\) 2.21687e10 3.32191e10i 0.111336 0.166833i
\(669\) −8.38835e10 −0.418767
\(670\) 0 0
\(671\) 2.88108e8i 0.00142123i
\(672\) 1.66246e10 1.66147e9i 0.0815220 0.00814734i
\(673\) −2.01911e10 −0.0984239 −0.0492120 0.998788i \(-0.515671\pi\)
−0.0492120 + 0.998788i \(0.515671\pi\)
\(674\) 8.11117e10 2.67666e11i 0.393047 1.29704i
\(675\) 0 0
\(676\) 1.07324e11 + 7.16223e10i 0.513936 + 0.342974i
\(677\) −3.25587e10 −0.154993 −0.0774966 0.996993i \(-0.524693\pi\)
−0.0774966 + 0.996993i \(0.524693\pi\)
\(678\) −1.76976e11 5.36298e10i −0.837523 0.253797i
\(679\) 7.11514e9i 0.0334737i
\(680\) 0 0
\(681\) 3.14816e11 1.46375
\(682\) 2.82638e8 9.32695e8i 0.00130645 0.00431124i
\(683\) 2.46509e10i 0.113279i 0.998395 + 0.0566396i \(0.0180386\pi\)
−0.998395 + 0.0566396i \(0.981961\pi\)
\(684\) −1.25251e10 + 1.87684e10i −0.0572210 + 0.0857438i
\(685\) 0 0
\(686\) −3.69930e10 1.12101e10i −0.167041 0.0506190i
\(687\) 1.01990e11i 0.457856i
\(688\) −1.34489e11 + 5.58882e10i −0.600252 + 0.249440i
\(689\) −2.74746e11 −1.21914
\(690\) 0 0
\(691\) 3.02518e11i 1.32690i 0.748220 + 0.663451i \(0.230909\pi\)
−0.748220 + 0.663451i \(0.769091\pi\)
\(692\) 9.92363e10 + 6.62252e10i 0.432759 + 0.288801i
\(693\) 2.45361e7 0.000106383
\(694\) −6.25894e9 1.89667e9i −0.0269813 0.00817624i
\(695\) 0 0
\(696\) 1.70475e11 + 2.07360e11i 0.726480 + 0.883665i
\(697\) −3.04690e11 −1.29100
\(698\) 7.07805e10 2.33573e11i 0.298189 0.984015i
\(699\) 1.95277e10i 0.0817980i
\(700\) 0 0
\(701\) −1.07716e11 −0.446076 −0.223038 0.974810i \(-0.571597\pi\)
−0.223038 + 0.974810i \(0.571597\pi\)
\(702\) −1.51215e11 4.58233e10i −0.622655 0.188685i
\(703\) 2.69658e11i 1.10406i
\(704\) −2.33284e9 4.59856e8i −0.00949715 0.00187211i
\(705\) 0 0
\(706\) −1.09652e10 + 3.61849e10i −0.0441366 + 0.145649i
\(707\) 1.14941e10i 0.0460041i
\(708\) −1.02978e11 6.87225e10i −0.409839 0.273505i
\(709\) −2.10543e10 −0.0833213 −0.0416606 0.999132i \(-0.513265\pi\)
−0.0416606 + 0.999132i \(0.513265\pi\)
\(710\) 0 0
\(711\) 1.67894e10i 0.0656988i
\(712\) −8.48946e10 + 6.97936e10i −0.330339 + 0.271579i
\(713\) 1.95780e11 0.757547
\(714\) 7.55830e9 2.49421e10i 0.0290825 0.0959712i
\(715\) 0 0
\(716\) 2.05586e11 3.08064e11i 0.782242 1.17216i
\(717\) 2.89778e10 0.109645
\(718\) 2.99610e11 + 9.07918e10i 1.12735 + 0.341624i
\(719\) 1.84186e11i 0.689193i 0.938751 + 0.344597i \(0.111984\pi\)
−0.938751 + 0.344597i \(0.888016\pi\)
\(720\) 0 0
\(721\) −1.15553e9 −0.00427602
\(722\) −2.55934e10 + 8.44573e10i −0.0941843 + 0.310805i
\(723\) 4.16426e11i 1.52400i
\(724\) 1.23608e11 + 8.24900e10i 0.449877 + 0.300225i
\(725\) 0 0
\(726\) −2.48612e11 7.53376e10i −0.894901 0.271185i
\(727\) 1.34820e11i 0.482632i 0.970447 + 0.241316i \(0.0775791\pi\)
−0.970447 + 0.241316i \(0.922421\pi\)
\(728\) 9.66019e9 + 1.17503e10i 0.0343922 + 0.0418336i
\(729\) −3.08413e11 −1.09200
\(730\) 0 0
\(731\) 2.27185e11i 0.795628i
\(732\) 2.18825e10 3.27902e10i 0.0762172 0.114209i
\(733\) 5.46288e10 0.189237 0.0946184 0.995514i \(-0.469837\pi\)
0.0946184 + 0.995514i \(0.469837\pi\)
\(734\) −3.68500e11 1.11668e11i −1.26956 0.384719i
\(735\) 0 0
\(736\) −4.75002e10 4.75285e11i −0.161877 1.61973i
\(737\) 2.88411e9 0.00977558
\(738\) 1.13826e10 3.75623e10i 0.0383722 0.126627i
\(739\) 2.87010e11i 0.962320i −0.876633 0.481160i \(-0.840216\pi\)
0.876633 0.481160i \(-0.159784\pi\)
\(740\) 0 0
\(741\) 1.43219e11 0.475037
\(742\) 5.01218e10 + 1.51886e10i 0.165353 + 0.0501074i
\(743\) 1.72722e11i 0.566750i −0.959009 0.283375i \(-0.908546\pi\)
0.959009 0.283375i \(-0.0914541\pi\)
\(744\) 1.03008e11 8.46850e10i 0.336186 0.276385i
\(745\) 0 0
\(746\) 7.91090e10 2.61057e11i 0.255429 0.842908i
\(747\) 4.19012e10i 0.134569i
\(748\) −2.05887e9 + 3.08515e9i −0.00657692 + 0.00985529i
\(749\) −9.63769e9 −0.0306228
\(750\) 0 0
\(751\) 1.75776e11i 0.552586i 0.961073 + 0.276293i \(0.0891060\pi\)
−0.961073 + 0.276293i \(0.910894\pi\)
\(752\) 4.62293e11 1.92110e11i 1.44559 0.600729i
\(753\) 5.47098e11 1.70171
\(754\) −7.08796e10 + 2.33901e11i −0.219299 + 0.723679i
\(755\) 0 0
\(756\) 2.50529e10 + 1.67190e10i 0.0766957 + 0.0511828i
\(757\) −2.40268e11 −0.731665 −0.365833 0.930681i \(-0.619216\pi\)
−0.365833 + 0.930681i \(0.619216\pi\)
\(758\) 2.45655e11 + 7.44415e10i 0.744129 + 0.225496i
\(759\) 4.89027e9i 0.0147355i
\(760\) 0 0
\(761\) 5.00466e11 1.49223 0.746115 0.665817i \(-0.231917\pi\)
0.746115 + 0.665817i \(0.231917\pi\)
\(762\) 1.36697e11 4.51097e11i 0.405453 1.33798i
\(763\) 2.83942e10i 0.0837784i
\(764\) 3.26168e11 4.88752e11i 0.957344 1.43455i
\(765\) 0 0
\(766\) −1.89707e11 5.74875e10i −0.551021 0.166978i
\(767\) 1.12718e11i 0.325697i
\(768\) −2.30578e11 2.29522e11i −0.662785 0.659749i
\(769\) 1.02605e11 0.293402 0.146701 0.989181i \(-0.453135\pi\)
0.146701 + 0.989181i \(0.453135\pi\)
\(770\) 0 0
\(771\) 1.13107e11i 0.320089i
\(772\) −3.03523e11 2.02556e11i −0.854522 0.570264i
\(773\) −5.93175e11 −1.66136 −0.830682 0.556747i \(-0.812049\pi\)
−0.830682 + 0.556747i \(0.812049\pi\)
\(774\) −2.80074e10 8.48718e9i −0.0780386 0.0236483i
\(775\) 0 0
\(776\) −1.07026e11 + 8.79883e10i −0.295150 + 0.242649i
\(777\) −4.01219e10 −0.110077
\(778\) 5.91747e10 1.95274e11i 0.161517 0.533000i
\(779\) 3.19169e11i 0.866704i
\(780\) 0 0
\(781\) 6.29910e9 0.0169307
\(782\) −7.13077e11 2.16086e11i −1.90682 0.577829i
\(783\) 4.83929e11i 1.28746i
\(784\) 1.43866e11 + 3.46200e11i 0.380798 + 0.916352i
\(785\) 0 0
\(786\) 1.87101e11 6.17427e11i 0.490214 1.61769i
\(787\) 1.93252e11i 0.503761i 0.967758 + 0.251880i \(0.0810489\pi\)
−0.967758 + 0.251880i \(0.918951\pi\)
\(788\) 3.02531e11 + 2.01894e11i 0.784630 + 0.523622i
\(789\) 3.47338e11 0.896280
\(790\) 0 0
\(791\) 3.20942e10i 0.0819825i
\(792\) −3.03422e8 3.69073e8i −0.000771164 0.000938018i
\(793\) 3.58917e10 0.0907613
\(794\) −9.05879e10 + 2.98937e11i −0.227923 + 0.752139i
\(795\) 0 0
\(796\) 2.70043e11 4.04651e11i 0.672638 1.00793i
\(797\) 4.34328e11 1.07643 0.538213 0.842809i \(-0.319099\pi\)
0.538213 + 0.842809i \(0.319099\pi\)
\(798\) −2.61274e10 7.91746e9i −0.0644294 0.0195243i
\(799\) 7.80925e11i 1.91612i
\(800\) 0 0
\(801\) −2.20838e10 −0.0536468
\(802\) −1.13636e11 + 3.74994e11i −0.274674 + 0.906415i
\(803\) 2.54911e9i 0.00613093i
\(804\) 3.28247e11 + 2.19055e11i 0.785555 + 0.524239i
\(805\) 0 0
\(806\) 1.16192e11 + 3.52101e10i 0.275320 + 0.0834310i
\(807\) 4.32504e11i 1.01976i
\(808\) 1.72894e11 1.42140e11i 0.405635 0.333481i
\(809\) 7.57515e11 1.76847 0.884234 0.467044i \(-0.154681\pi\)
0.884234 + 0.467044i \(0.154681\pi\)
\(810\) 0 0
\(811\) 1.15001e11i 0.265838i −0.991127 0.132919i \(-0.957565\pi\)
0.991127 0.132919i \(-0.0424350\pi\)
\(812\) 2.58611e10 3.87520e10i 0.0594870 0.0891394i
\(813\) 6.52698e11 1.49400
\(814\) 5.46457e9 + 1.65595e9i 0.0124468 + 0.00377180i
\(815\) 0 0
\(816\) −4.68649e11 + 1.94751e11i −1.05703 + 0.439258i
\(817\) 2.37981e11 0.534138
\(818\) −8.34061e10 + 2.75238e11i −0.186288 + 0.614744i
\(819\) 3.05663e9i 0.00679373i
\(820\) 0 0
\(821\) −2.18337e11 −0.480568 −0.240284 0.970703i \(-0.577240\pi\)
−0.240284 + 0.970703i \(0.577240\pi\)
\(822\) −5.93122e11 1.79736e11i −1.29914 0.393683i
\(823\) 2.44330e11i 0.532572i −0.963894 0.266286i \(-0.914203\pi\)
0.963894 0.266286i \(-0.0857965\pi\)
\(824\) 1.42897e10 + 1.73815e10i 0.0309966 + 0.0377032i
\(825\) 0 0
\(826\) −6.23132e9 + 2.05632e10i −0.0133863 + 0.0441743i
\(827\) 6.25569e11i 1.33738i 0.743543 + 0.668688i \(0.233144\pi\)
−0.743543 + 0.668688i \(0.766856\pi\)
\(828\) 5.32782e10 7.98357e10i 0.113352 0.169854i
\(829\) −7.91341e11 −1.67550 −0.837752 0.546051i \(-0.816131\pi\)
−0.837752 + 0.546051i \(0.816131\pi\)
\(830\) 0 0
\(831\) 4.35132e11i 0.912466i
\(832\) 5.72874e10 2.90618e11i 0.119554 0.606497i
\(833\) 5.84816e11 1.21462
\(834\) −1.41898e11 + 4.68257e11i −0.293299 + 0.967878i
\(835\) 0 0
\(836\) 3.23175e9 + 2.15670e9i 0.00661626 + 0.00441535i
\(837\) 2.40396e11 0.489808
\(838\) 5.35735e11 + 1.62346e11i 1.08636 + 0.329204i
\(839\) 1.97673e11i 0.398933i 0.979905 + 0.199466i \(0.0639209\pi\)
−0.979905 + 0.199466i \(0.936079\pi\)
\(840\) 0 0
\(841\) 2.48297e11 0.496350
\(842\) −5.45094e10 + 1.79879e11i −0.108448 + 0.357876i
\(843\) 5.87189e11i 1.16270i
\(844\) −2.38659e11 + 3.57623e11i −0.470336 + 0.704783i
\(845\) 0 0
\(846\) 9.62726e10 + 2.91738e10i 0.187941 + 0.0569524i
\(847\) 4.50851e10i 0.0875990i
\(848\) −3.91357e11 9.41760e11i −0.756815 1.82120i
\(849\) 2.69707e11 0.519112
\(850\) 0 0
\(851\) 1.14705e12i 2.18708i
\(852\) 7.16914e11 + 4.78431e11i 1.36053 + 0.907949i
\(853\) −9.60505e11 −1.81428 −0.907138 0.420833i \(-0.861738\pi\)
−0.907138 + 0.420833i \(0.861738\pi\)
\(854\) −6.54770e9 1.98417e9i −0.0123100 0.00373033i
\(855\) 0 0
\(856\) 1.19183e11 + 1.44970e11i 0.221983 + 0.270012i
\(857\) −1.83889e10 −0.0340904 −0.0170452 0.999855i \(-0.505426\pi\)
−0.0170452 + 0.999855i \(0.505426\pi\)
\(858\) −8.79495e8 + 2.90230e9i −0.00162287 + 0.00535542i
\(859\) 2.58648e11i 0.475048i −0.971382 0.237524i \(-0.923664\pi\)
0.971382 0.237524i \(-0.0763358\pi\)
\(860\) 0 0
\(861\) 4.74884e10 0.0864123
\(862\) −6.30729e11 1.91132e11i −1.14239 0.346182i
\(863\) 4.58083e11i 0.825849i 0.910765 + 0.412925i \(0.135493\pi\)
−0.910765 + 0.412925i \(0.864507\pi\)
\(864\) −5.83252e10 5.83600e11i −0.104665 1.04727i
\(865\) 0 0
\(866\) −6.44420e10 + 2.12656e11i −0.114577 + 0.378100i
\(867\) 2.63254e11i 0.465906i
\(868\) −1.92504e10 1.28467e10i −0.0339126 0.0226315i
\(869\) −2.89099e9 −0.00506953
\(870\) 0 0
\(871\) 3.59294e11i 0.624277i
\(872\) 4.27106e11 3.51133e11i 0.738703 0.607303i
\(873\) −2.78409e10 −0.0479320
\(874\) −2.26354e11 + 7.46961e11i −0.387921 + 1.28012i
\(875\) 0 0
\(876\) −1.93611e11 + 2.90120e11i −0.328786 + 0.492675i
\(877\) 9.94220e11 1.68068 0.840338 0.542062i \(-0.182356\pi\)
0.840338 + 0.542062i \(0.182356\pi\)
\(878\) −3.47249e11 1.05228e11i −0.584337 0.177074i
\(879\) 4.25604e11i 0.712935i
\(880\) 0 0
\(881\) 4.02463e11 0.668071 0.334036 0.942560i \(-0.391589\pi\)
0.334036 + 0.942560i \(0.391589\pi\)
\(882\) −2.18476e10 + 7.20962e10i −0.0361018 + 0.119135i
\(883\) 7.19682e11i 1.18385i −0.805992 0.591926i \(-0.798368\pi\)
0.805992 0.591926i \(-0.201632\pi\)
\(884\) −3.84338e11 2.56488e11i −0.629368 0.420008i
\(885\) 0 0
\(886\) −6.25024e11 1.89403e11i −1.01429 0.307363i
\(887\) 4.82885e11i 0.780097i −0.920794 0.390049i \(-0.872458\pi\)
0.920794 0.390049i \(-0.127542\pi\)
\(888\) 4.96161e11 + 6.03514e11i 0.797941 + 0.970589i
\(889\) −8.18053e10 −0.130971
\(890\) 0 0
\(891\) 5.23941e9i 0.00831326i
\(892\) 1.57364e11 2.35804e11i 0.248568 0.372470i
\(893\) −8.18034e11 −1.28637
\(894\) −2.93144e11 8.88324e10i −0.458913 0.139066i
\(895\) 0 0
\(896\) −2.65169e10 + 4.98502e10i −0.0411425 + 0.0773455i
\(897\) −6.09215e11 −0.941024
\(898\) −1.92975e11 + 6.36811e11i −0.296753 + 0.979277i
\(899\) 3.71846e11i 0.569278i
\(900\) 0 0
\(901\) −1.59086e12 −2.41398
\(902\) −6.46789e9 1.95999e9i −0.00977094 0.00296092i
\(903\) 3.54086e10i 0.0532547i
\(904\) 4.82762e11 3.96889e11i 0.722869 0.594285i
\(905\) 0 0
\(906\) −4.03462e10 + 1.33141e11i −0.0598811 + 0.197606i
\(907\) 1.11961e12i 1.65439i −0.561917 0.827194i \(-0.689936\pi\)
0.561917 0.827194i \(-0.310064\pi\)
\(908\) −5.90588e11 + 8.84976e11i −0.868842 + 1.30193i
\(909\) 4.49753e10 0.0658746
\(910\) 0 0
\(911\) 1.90411e10i 0.0276451i −0.999904 0.0138225i \(-0.995600\pi\)
0.999904 0.0138225i \(-0.00439999\pi\)
\(912\) 2.04006e11 + 4.90918e11i 0.294892 + 0.709626i
\(913\) 7.21501e9 0.0103837
\(914\) 3.69506e11 1.21936e12i 0.529464 1.74721i
\(915\) 0 0
\(916\) −2.86702e11 1.91330e11i −0.407238 0.271770i
\(917\) −1.11969e11 −0.158351
\(918\) −8.75582e11 2.65330e11i −1.23289 0.373608i
\(919\) 1.16760e11i 0.163694i −0.996645 0.0818470i \(-0.973918\pi\)
0.996645 0.0818470i \(-0.0260819\pi\)
\(920\) 0 0
\(921\) 8.88852e11 1.23535
\(922\) 1.08071e11 3.56631e11i 0.149550 0.493509i
\(923\) 7.84722e11i 1.08121i
\(924\) 3.20891e8 4.80845e8i 0.000440220 0.000659656i
\(925\) 0 0
\(926\) 5.77940e11 + 1.75135e11i 0.786030 + 0.238193i
\(927\) 4.52148e9i 0.00612296i
\(928\) −9.02714e11 + 9.02177e10i −1.21719 + 0.121647i
\(929\) −8.06361e11 −1.08260 −0.541298 0.840831i \(-0.682067\pi\)
−0.541298 + 0.840831i \(0.682067\pi\)
\(930\) 0 0
\(931\) 6.12606e11i 0.815422i
\(932\) 5.48942e10 + 3.66336e10i 0.0727550 + 0.0485529i
\(933\) −6.29299e11 −0.830482
\(934\) −5.50120e11 1.66705e11i −0.722887 0.219059i
\(935\) 0 0
\(936\) 4.59779e10 3.77994e10i 0.0599027 0.0492472i
\(937\) −1.43350e12 −1.85968 −0.929842 0.367959i \(-0.880057\pi\)
−0.929842 + 0.367959i \(0.880057\pi\)
\(938\) 1.98626e10 6.55458e10i 0.0256581 0.0846708i
\(939\) 6.50353e11i 0.836540i
\(940\) 0 0
\(941\) −1.41766e12 −1.80806 −0.904029 0.427472i \(-0.859404\pi\)
−0.904029 + 0.427472i \(0.859404\pi\)
\(942\) 4.04530e11 + 1.22586e11i 0.513744 + 0.155682i
\(943\) 1.35766e12i 1.71690i
\(944\) 3.86370e11 1.60560e11i 0.486537 0.202185i
\(945\) 0 0
\(946\) −1.46142e9 + 4.82263e9i −0.00182478 + 0.00602170i
\(947\) 7.59493e11i 0.944331i −0.881510 0.472165i \(-0.843473\pi\)
0.881510 0.472165i \(-0.156527\pi\)
\(948\) −3.29030e11 2.19578e11i −0.407382 0.271866i
\(949\) −3.17560e11 −0.391527
\(950\) 0 0
\(951\) 1.90215e11i 0.232553i
\(952\) 5.59354e10 + 6.80379e10i 0.0680987 + 0.0828330i
\(953\) −3.72618e11 −0.451743 −0.225872 0.974157i \(-0.572523\pi\)
−0.225872 + 0.974157i \(0.572523\pi\)
\(954\) 5.94315e10 1.96122e11i 0.0717502 0.236773i
\(955\) 0 0
\(956\) −5.43617e10 + 8.14592e10i −0.0650821 + 0.0975234i
\(957\) 9.28814e9 0.0110734
\(958\) 6.74760e11 + 2.04475e11i 0.801101 + 0.242760i
\(959\) 1.07561e11i 0.127169i
\(960\) 0 0
\(961\) 6.68173e11 0.783421
\(962\) −2.06293e11 + 6.80759e11i −0.240870 + 0.794865i
\(963\) 3.77114e10i 0.0438497i
\(964\) 1.17061e12 + 7.81206e11i 1.35552 + 0.904601i
\(965\) 0 0
\(966\) 1.11139e11 + 3.36787e10i 0.127631 + 0.0386765i
\(967\) 7.07203e11i 0.808794i −0.914584 0.404397i \(-0.867481\pi\)
0.914584 0.404397i \(-0.132519\pi\)
\(968\) 6.78171e11 5.57538e11i 0.772392 0.634999i
\(969\) 8.29281e11 0.940603
\(970\) 0 0
\(971\) 1.48456e12i 1.67001i −0.550240 0.835007i \(-0.685464\pi\)
0.550240 0.835007i \(-0.314536\pi\)
\(972\) 1.23548e11 1.85133e11i 0.138411 0.207404i
\(973\) 8.49173e10 0.0947425
\(974\) −6.11457e11 1.85292e11i −0.679407 0.205883i
\(975\) 0 0
\(976\) 5.11252e10 + 1.23027e11i 0.0563424 + 0.135582i
\(977\) 4.31329e10 0.0473402 0.0236701 0.999720i \(-0.492465\pi\)
0.0236701 + 0.999720i \(0.492465\pi\)
\(978\) 1.04116e11 3.43581e11i 0.113806 0.375555i
\(979\) 3.80263e9i 0.00413955i
\(980\) 0 0
\(981\) 1.11104e11 0.119965
\(982\) 1.21999e12 + 3.69699e11i 1.31193 + 0.397559i
\(983\) 1.13842e12i 1.21923i 0.792696 + 0.609617i \(0.208677\pi\)
−0.792696 + 0.609617i \(0.791323\pi\)
\(984\) −5.87259e11 7.14322e11i −0.626396 0.761927i
\(985\) 0 0
\(986\) −4.10414e11 + 1.35435e12i −0.434225 + 1.43293i
\(987\) 1.21714e11i 0.128254i
\(988\) −2.68676e11 + 4.02602e11i −0.281968 + 0.422520i
\(989\) −1.01231e12 −1.05810
\(990\) 0 0
\(991\) 6.27241e11i 0.650339i 0.945656 + 0.325170i \(0.105421\pi\)
−0.945656 + 0.325170i \(0.894579\pi\)
\(992\) 4.48165e10 + 4.48432e11i 0.0462797 + 0.463073i
\(993\) 1.05223e12 1.08222
\(994\) 4.33812e10 1.43156e11i 0.0444381 0.146644i
\(995\) 0 0
\(996\) 8.21156e11 + 5.47997e11i 0.834427 + 0.556854i
\(997\) −2.64260e11 −0.267455 −0.133728 0.991018i \(-0.542695\pi\)
−0.133728 + 0.991018i \(0.542695\pi\)
\(998\) 2.39165e11 + 7.24750e10i 0.241088 + 0.0730578i
\(999\) 1.40846e12i 1.41411i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 100.9.b.d.51.8 16
4.3 odd 2 inner 100.9.b.d.51.7 16
5.2 odd 4 100.9.d.c.99.3 32
5.3 odd 4 100.9.d.c.99.30 32
5.4 even 2 20.9.b.a.11.9 16
15.14 odd 2 180.9.c.a.91.8 16
20.3 even 4 100.9.d.c.99.4 32
20.7 even 4 100.9.d.c.99.29 32
20.19 odd 2 20.9.b.a.11.10 yes 16
40.19 odd 2 320.9.b.d.191.5 16
40.29 even 2 320.9.b.d.191.12 16
60.59 even 2 180.9.c.a.91.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.9.b.a.11.9 16 5.4 even 2
20.9.b.a.11.10 yes 16 20.19 odd 2
100.9.b.d.51.7 16 4.3 odd 2 inner
100.9.b.d.51.8 16 1.1 even 1 trivial
100.9.d.c.99.3 32 5.2 odd 4
100.9.d.c.99.4 32 20.3 even 4
100.9.d.c.99.29 32 20.7 even 4
100.9.d.c.99.30 32 5.3 odd 4
180.9.c.a.91.7 16 60.59 even 2
180.9.c.a.91.8 16 15.14 odd 2
320.9.b.d.191.5 16 40.19 odd 2
320.9.b.d.191.12 16 40.29 even 2