Properties

Label 2-10e2-20.19-c8-0-26
Degree $2$
Conductor $100$
Sign $0.913 + 0.406i$
Analytic cond. $40.7378$
Root an. cond. $6.38262$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−11.0 + 11.5i)2-s − 27.2·3-s + (−11.6 − 255. i)4-s + (301. − 315. i)6-s − 3.32e3·7-s + (3.08e3 + 2.69e3i)8-s − 5.81e3·9-s + 6.36e3i·11-s + (316. + 6.96e3i)12-s + 3.07e4i·13-s + (3.67e4 − 3.84e4i)14-s + (−6.52e4 + 5.94e3i)16-s + 1.22e5i·17-s + (6.43e4 − 6.73e4i)18-s + 7.55e3i·19-s + ⋯
L(s)  = 1  + (−0.690 + 0.722i)2-s − 0.336·3-s + (−0.0453 − 0.998i)4-s + (0.232 − 0.243i)6-s − 1.38·7-s + (0.753 + 0.657i)8-s − 0.886·9-s + 0.434i·11-s + (0.0152 + 0.335i)12-s + 1.07i·13-s + (0.956 − 1.00i)14-s + (−0.995 + 0.0906i)16-s + 1.46i·17-s + (0.612 − 0.641i)18-s + 0.0579i·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.913 + 0.406i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.913 + 0.406i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(100\)    =    \(2^{2} \cdot 5^{2}\)
Sign: $0.913 + 0.406i$
Analytic conductor: \(40.7378\)
Root analytic conductor: \(6.38262\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{100} (99, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 100,\ (\ :4),\ 0.913 + 0.406i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.249962 - 0.0530481i\)
\(L(\frac12)\) \(\approx\) \(0.249962 - 0.0530481i\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (11.0 - 11.5i)T \)
5 \( 1 \)
good3 \( 1 + 27.2T + 6.56e3T^{2} \)
7 \( 1 + 3.32e3T + 5.76e6T^{2} \)
11 \( 1 - 6.36e3iT - 2.14e8T^{2} \)
13 \( 1 - 3.07e4iT - 8.15e8T^{2} \)
17 \( 1 - 1.22e5iT - 6.97e9T^{2} \)
19 \( 1 - 7.55e3iT - 1.69e10T^{2} \)
23 \( 1 + 4.06e5T + 7.83e10T^{2} \)
29 \( 1 + 8.28e5T + 5.00e11T^{2} \)
31 \( 1 + 1.39e6iT - 8.52e11T^{2} \)
37 \( 1 + 3.86e5iT - 3.51e12T^{2} \)
41 \( 1 + 9.72e5T + 7.98e12T^{2} \)
43 \( 1 - 4.61e6T + 1.16e13T^{2} \)
47 \( 1 + 1.87e6T + 2.38e13T^{2} \)
53 \( 1 - 8.01e6iT - 6.22e13T^{2} \)
59 \( 1 - 6.18e6iT - 1.46e14T^{2} \)
61 \( 1 - 9.79e6T + 1.91e14T^{2} \)
67 \( 1 - 1.19e6T + 4.06e14T^{2} \)
71 \( 1 + 3.62e7iT - 6.45e14T^{2} \)
73 \( 1 + 3.35e7iT - 8.06e14T^{2} \)
79 \( 1 + 1.22e6iT - 1.51e15T^{2} \)
83 \( 1 - 6.96e7T + 2.25e15T^{2} \)
89 \( 1 + 5.58e7T + 3.93e15T^{2} \)
97 \( 1 + 5.97e7iT - 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.12290417970799851128570090499, −10.89365952956292312161437121249, −9.807728288068449253659081051034, −9.009483697344171640520736271252, −7.72232800250094965083674901172, −6.37616168176878310893745802385, −5.86543513388531925084299873733, −4.02746508032004860695432626409, −2.04680612039142073391134440942, −0.16884281029342925869163279482, 0.59943343196546678345008154492, 2.65864781184241846450353329403, 3.51572409690529062436029390446, 5.50006662237567429951953389518, 6.82844622902610911090566442954, 8.164577741571636642733862646808, 9.301409755108810032905550518631, 10.16589663651559471697566484831, 11.22520689236834646260845898189, 12.17811380057807532828252417792

Graph of the $Z$-function along the critical line