L(s) = 1 | + (7.35 + 14.2i)2-s + (−147. + 208. i)4-s + 279.·5-s − 3.54e3i·7-s + (−4.05e3 − 567. i)8-s + (2.05e3 + 3.97e3i)10-s + 1.59e4i·11-s − 2.41e4·13-s + (5.03e4 − 2.60e4i)14-s + (−2.17e4 − 6.18e4i)16-s − 4.38e4·17-s − 5.09e4i·19-s + (−4.13e4 + 5.83e4i)20-s + (−2.26e5 + 1.17e5i)22-s + 2.70e5i·23-s + ⋯ |
L(s) = 1 | + (0.459 + 0.888i)2-s + (−0.577 + 0.816i)4-s + 0.447·5-s − 1.47i·7-s + (−0.990 − 0.138i)8-s + (0.205 + 0.397i)10-s + 1.09i·11-s − 0.846·13-s + (1.30 − 0.677i)14-s + (−0.332 − 0.943i)16-s − 0.524·17-s − 0.390i·19-s + (−0.258 + 0.364i)20-s + (−0.968 + 0.501i)22-s + 0.967i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.577 - 0.816i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.577 - 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{9}{2})\) |
\(\approx\) |
\(2.484376585\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.484376585\) |
\(L(5)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-7.35 - 14.2i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 - 279.T \) |
good | 7 | \( 1 + 3.54e3iT - 5.76e6T^{2} \) |
| 11 | \( 1 - 1.59e4iT - 2.14e8T^{2} \) |
| 13 | \( 1 + 2.41e4T + 8.15e8T^{2} \) |
| 17 | \( 1 + 4.38e4T + 6.97e9T^{2} \) |
| 19 | \( 1 + 5.09e4iT - 1.69e10T^{2} \) |
| 23 | \( 1 - 2.70e5iT - 7.83e10T^{2} \) |
| 29 | \( 1 - 1.32e6T + 5.00e11T^{2} \) |
| 31 | \( 1 + 1.18e6iT - 8.52e11T^{2} \) |
| 37 | \( 1 - 2.97e6T + 3.51e12T^{2} \) |
| 41 | \( 1 - 4.92e6T + 7.98e12T^{2} \) |
| 43 | \( 1 - 2.86e6iT - 1.16e13T^{2} \) |
| 47 | \( 1 + 1.26e4iT - 2.38e13T^{2} \) |
| 53 | \( 1 - 5.50e6T + 6.22e13T^{2} \) |
| 59 | \( 1 + 6.68e6iT - 1.46e14T^{2} \) |
| 61 | \( 1 + 2.50e6T + 1.91e14T^{2} \) |
| 67 | \( 1 + 3.86e6iT - 4.06e14T^{2} \) |
| 71 | \( 1 - 3.21e7iT - 6.45e14T^{2} \) |
| 73 | \( 1 - 1.91e7T + 8.06e14T^{2} \) |
| 79 | \( 1 + 5.33e7iT - 1.51e15T^{2} \) |
| 83 | \( 1 - 6.22e6iT - 2.25e15T^{2} \) |
| 89 | \( 1 + 3.83e7T + 3.93e15T^{2} \) |
| 97 | \( 1 - 7.87e7T + 7.83e15T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.42326366441551524684019982626, −10.06662121136695932769985174135, −9.382506251770112345401456046402, −7.81664348277848271509608065119, −7.20502125119750996572855274150, −6.24432984906721052043565763156, −4.78146591753072595665450769413, −4.16569406134087982741645422761, −2.55984629109237760186142805124, −0.72984626349804801268315447527,
0.78146115723337088063762512450, 2.30152321538997838838588124718, 2.91016567459353602034555784831, 4.56933178039304979812113246694, 5.60331202322360582553224840111, 6.38468079066569406907212802341, 8.439085415472726007070301548539, 9.093918361698729718428637504479, 10.15907464974909364481571360320, 11.12497397264902521878231023527