L(s) = 1 | + (1.41 + 15.9i)2-s + (−252. + 45.0i)4-s − 279.·5-s + 2.63e3i·7-s + (−1.07e3 − 3.95e3i)8-s + (−395. − 4.45e3i)10-s + 2.48e3i·11-s + 4.13e4·13-s + (−4.19e4 + 3.72e3i)14-s + (6.14e4 − 2.27e4i)16-s + 4.86e4·17-s + 2.41e5i·19-s + (7.04e4 − 1.25e4i)20-s + (−3.95e4 + 3.51e3i)22-s − 5.77e4i·23-s + ⋯ |
L(s) = 1 | + (0.0883 + 0.996i)2-s + (−0.984 + 0.175i)4-s − 0.447·5-s + 1.09i·7-s + (−0.262 − 0.965i)8-s + (−0.0395 − 0.445i)10-s + 0.169i·11-s + 1.44·13-s + (−1.09 + 0.0968i)14-s + (0.938 − 0.346i)16-s + 0.582·17-s + 1.85i·19-s + (0.440 − 0.0786i)20-s + (−0.169 + 0.0149i)22-s − 0.206i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.984 + 0.175i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.984 + 0.175i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{9}{2})\) |
\(\approx\) |
\(1.587857325\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.587857325\) |
\(L(5)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.41 - 15.9i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + 279.T \) |
good | 7 | \( 1 - 2.63e3iT - 5.76e6T^{2} \) |
| 11 | \( 1 - 2.48e3iT - 2.14e8T^{2} \) |
| 13 | \( 1 - 4.13e4T + 8.15e8T^{2} \) |
| 17 | \( 1 - 4.86e4T + 6.97e9T^{2} \) |
| 19 | \( 1 - 2.41e5iT - 1.69e10T^{2} \) |
| 23 | \( 1 + 5.77e4iT - 7.83e10T^{2} \) |
| 29 | \( 1 - 7.29e5T + 5.00e11T^{2} \) |
| 31 | \( 1 - 1.34e5iT - 8.52e11T^{2} \) |
| 37 | \( 1 - 1.68e6T + 3.51e12T^{2} \) |
| 41 | \( 1 - 7.61e5T + 7.98e12T^{2} \) |
| 43 | \( 1 + 2.54e6iT - 1.16e13T^{2} \) |
| 47 | \( 1 - 5.65e6iT - 2.38e13T^{2} \) |
| 53 | \( 1 + 1.14e7T + 6.22e13T^{2} \) |
| 59 | \( 1 - 2.12e7iT - 1.46e14T^{2} \) |
| 61 | \( 1 + 2.63e7T + 1.91e14T^{2} \) |
| 67 | \( 1 + 1.53e6iT - 4.06e14T^{2} \) |
| 71 | \( 1 + 2.06e7iT - 6.45e14T^{2} \) |
| 73 | \( 1 - 2.51e7T + 8.06e14T^{2} \) |
| 79 | \( 1 - 1.95e7iT - 1.51e15T^{2} \) |
| 83 | \( 1 + 2.37e7iT - 2.25e15T^{2} \) |
| 89 | \( 1 + 3.86e7T + 3.93e15T^{2} \) |
| 97 | \( 1 + 9.46e7T + 7.83e15T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.02546951441590748101289428477, −10.58895217309938259371908651550, −9.365724562961191920753025836872, −8.426941465958314244947399364064, −7.77970733883147913467328857391, −6.28482663998513930201430268007, −5.69535632267995866098541578879, −4.31956774869405510119369124427, −3.19576742038977313374552835017, −1.24624234776046017523558607660,
0.45196485888797831235194949040, 1.23699349761680813562287752230, 2.95438079186517088023141435749, 3.90641399742160760929821007751, 4.86598836427616894979529886306, 6.41130223577031673889731340463, 7.78099401588009463932557989473, 8.765985625787882155236680925496, 9.847819205471135315640812248330, 10.98511540817060724461536044635