Properties

Label 180.9.c.a.91.10
Level $180$
Weight $9$
Character 180.91
Analytic conductor $73.328$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [180,9,Mod(91,180)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(180, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("180.91"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 180.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(73.3281498110\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 15630052 x^{14} + 100431843210026 x^{12} + \cdots + 41\!\cdots\!25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{58}\cdot 3^{4}\cdot 5^{16} \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 91.10
Root \(1316.60i\) of defining polynomial
Character \(\chi\) \(=\) 180.91
Dual form 180.9.c.a.91.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.41320 + 15.9375i) q^{2} +(-252.006 + 45.0455i) q^{4} -279.508 q^{5} +2633.20i q^{7} +(-1074.04 - 3952.68i) q^{8} +(-395.000 - 4454.66i) q^{10} +2484.31i q^{11} +41319.8 q^{13} +(-41966.5 + 3721.22i) q^{14} +(61477.8 - 22703.5i) q^{16} +48625.0 q^{17} +241516. i q^{19} +(70437.8 - 12590.6i) q^{20} +(-39593.7 + 3510.82i) q^{22} -57735.4i q^{23} +78125.0 q^{25} +(58392.9 + 658533. i) q^{26} +(-118614. - 663581. i) q^{28} +729286. q^{29} +134865. i q^{31} +(448716. + 947716. i) q^{32} +(68716.6 + 774960. i) q^{34} -736001. i q^{35} +1.68171e6 q^{37} +(-3.84915e6 + 341309. i) q^{38} +(300205. + 1.10481e6i) q^{40} +761790. q^{41} -2.54364e6i q^{43} +(-111907. - 626061. i) q^{44} +(920156. - 81591.4i) q^{46} +5.65990e6i q^{47} -1.16893e6 q^{49} +(110406. + 1.24511e6i) q^{50} +(-1.04128e7 + 1.86127e6i) q^{52} -1.14302e7 q^{53} -694387. i q^{55} +(1.04082e7 - 2.82817e6i) q^{56} +(1.03062e6 + 1.16230e7i) q^{58} +2.12902e7i q^{59} -2.63701e7 q^{61} +(-2.14940e6 + 190590. i) q^{62} +(-1.44701e7 + 8.49070e6i) q^{64} -1.15492e7 q^{65} -1.53982e6i q^{67} +(-1.22538e7 + 2.19034e6i) q^{68} +(1.17300e7 - 1.04011e6i) q^{70} -2.06597e7i q^{71} +2.51296e7 q^{73} +(2.37658e6 + 2.68022e7i) q^{74} +(-1.08792e7 - 6.08634e7i) q^{76} -6.54169e6 q^{77} +1.95344e7i q^{79} +(-1.71836e7 + 6.34581e6i) q^{80} +(1.07656e6 + 1.21410e7i) q^{82} -2.37076e7i q^{83} -1.35911e7 q^{85} +(4.05392e7 - 3.59466e6i) q^{86} +(9.81968e6 - 2.66826e6i) q^{88} -3.86749e7 q^{89} +1.08803e8i q^{91} +(2.60072e6 + 1.45497e7i) q^{92} +(-9.02045e7 + 7.99855e6i) q^{94} -6.75057e7i q^{95} -9.46443e7 q^{97} +(-1.65192e6 - 1.86298e7i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{2} - 52 q^{4} + 14184 q^{8} + 8750 q^{10} + 51392 q^{13} - 68472 q^{14} - 81424 q^{16} - 27552 q^{17} - 172500 q^{20} - 389120 q^{22} + 1250000 q^{25} - 1037124 q^{26} + 1288520 q^{28} - 2764896 q^{29}+ \cdots + 285387714 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/180\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(91\) \(101\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41320 + 15.9375i 0.0883247 + 0.996092i
\(3\) 0 0
\(4\) −252.006 + 45.0455i −0.984397 + 0.175959i
\(5\) −279.508 −0.447214
\(6\) 0 0
\(7\) 2633.20i 1.09671i 0.836246 + 0.548354i \(0.184745\pi\)
−0.836246 + 0.548354i \(0.815255\pi\)
\(8\) −1074.04 3952.68i −0.262218 0.965009i
\(9\) 0 0
\(10\) −395.000 4454.66i −0.0395000 0.445466i
\(11\) 2484.31i 0.169682i 0.996395 + 0.0848410i \(0.0270382\pi\)
−0.996395 + 0.0848410i \(0.972962\pi\)
\(12\) 0 0
\(13\) 41319.8 1.44672 0.723360 0.690471i \(-0.242597\pi\)
0.723360 + 0.690471i \(0.242597\pi\)
\(14\) −41966.5 + 3721.22i −1.09242 + 0.0968665i
\(15\) 0 0
\(16\) 61477.8 22703.5i 0.938077 0.346427i
\(17\) 48625.0 0.582189 0.291095 0.956694i \(-0.405981\pi\)
0.291095 + 0.956694i \(0.405981\pi\)
\(18\) 0 0
\(19\) 241516.i 1.85324i 0.376002 + 0.926619i \(0.377299\pi\)
−0.376002 + 0.926619i \(0.622701\pi\)
\(20\) 70437.8 12590.6i 0.440236 0.0786913i
\(21\) 0 0
\(22\) −39593.7 + 3510.82i −0.169019 + 0.0149871i
\(23\) 57735.4i 0.206315i −0.994665 0.103158i \(-0.967105\pi\)
0.994665 0.103158i \(-0.0328946\pi\)
\(24\) 0 0
\(25\) 78125.0 0.200000
\(26\) 58392.9 + 658533.i 0.127781 + 1.44107i
\(27\) 0 0
\(28\) −118614. 663581.i −0.192976 1.07960i
\(29\) 729286. 1.03111 0.515556 0.856856i \(-0.327585\pi\)
0.515556 + 0.856856i \(0.327585\pi\)
\(30\) 0 0
\(31\) 134865.i 0.146033i 0.997331 + 0.0730165i \(0.0232626\pi\)
−0.997331 + 0.0730165i \(0.976737\pi\)
\(32\) 448716. + 947716.i 0.427929 + 0.903813i
\(33\) 0 0
\(34\) 68716.6 + 774960.i 0.0514217 + 0.579914i
\(35\) 736001.i 0.490463i
\(36\) 0 0
\(37\) 1.68171e6 0.897313 0.448656 0.893704i \(-0.351903\pi\)
0.448656 + 0.893704i \(0.351903\pi\)
\(38\) −3.84915e6 + 341309.i −1.84599 + 0.163687i
\(39\) 0 0
\(40\) 300205. + 1.10481e6i 0.117267 + 0.431565i
\(41\) 761790. 0.269588 0.134794 0.990874i \(-0.456963\pi\)
0.134794 + 0.990874i \(0.456963\pi\)
\(42\) 0 0
\(43\) 2.54364e6i 0.744016i −0.928230 0.372008i \(-0.878669\pi\)
0.928230 0.372008i \(-0.121331\pi\)
\(44\) −111907. 626061.i −0.0298571 0.167034i
\(45\) 0 0
\(46\) 920156. 81591.4i 0.205509 0.0182227i
\(47\) 5.65990e6i 1.15989i 0.814655 + 0.579946i \(0.196926\pi\)
−0.814655 + 0.579946i \(0.803074\pi\)
\(48\) 0 0
\(49\) −1.16893e6 −0.202770
\(50\) 110406. + 1.24511e6i 0.0176649 + 0.199218i
\(51\) 0 0
\(52\) −1.04128e7 + 1.86127e6i −1.42415 + 0.254564i
\(53\) −1.14302e7 −1.44861 −0.724305 0.689480i \(-0.757839\pi\)
−0.724305 + 0.689480i \(0.757839\pi\)
\(54\) 0 0
\(55\) 694387.i 0.0758841i
\(56\) 1.04082e7 2.82817e6i 1.05833 0.287577i
\(57\) 0 0
\(58\) 1.03062e6 + 1.16230e7i 0.0910727 + 1.02708i
\(59\) 2.12902e7i 1.75700i 0.477740 + 0.878501i \(0.341456\pi\)
−0.477740 + 0.878501i \(0.658544\pi\)
\(60\) 0 0
\(61\) −2.63701e7 −1.90455 −0.952276 0.305238i \(-0.901264\pi\)
−0.952276 + 0.305238i \(0.901264\pi\)
\(62\) −2.14940e6 + 190590.i −0.145462 + 0.0128983i
\(63\) 0 0
\(64\) −1.44701e7 + 8.49070e6i −0.862483 + 0.506085i
\(65\) −1.15492e7 −0.646993
\(66\) 0 0
\(67\) 1.53982e6i 0.0764137i −0.999270 0.0382068i \(-0.987835\pi\)
0.999270 0.0382068i \(-0.0121646\pi\)
\(68\) −1.22538e7 + 2.19034e6i −0.573105 + 0.102441i
\(69\) 0 0
\(70\) 1.17300e7 1.04011e6i 0.488546 0.0433200i
\(71\) 2.06597e7i 0.813002i −0.913650 0.406501i \(-0.866749\pi\)
0.913650 0.406501i \(-0.133251\pi\)
\(72\) 0 0
\(73\) 2.51296e7 0.884899 0.442449 0.896793i \(-0.354110\pi\)
0.442449 + 0.896793i \(0.354110\pi\)
\(74\) 2.37658e6 + 2.68022e7i 0.0792549 + 0.893806i
\(75\) 0 0
\(76\) −1.08792e7 6.08634e7i −0.326094 1.82432i
\(77\) −6.54169e6 −0.186092
\(78\) 0 0
\(79\) 1.95344e7i 0.501525i 0.968049 + 0.250762i \(0.0806812\pi\)
−0.968049 + 0.250762i \(0.919319\pi\)
\(80\) −1.71836e7 + 6.34581e6i −0.419521 + 0.154927i
\(81\) 0 0
\(82\) 1.07656e6 + 1.21410e7i 0.0238113 + 0.268534i
\(83\) 2.37076e7i 0.499547i −0.968304 0.249773i \(-0.919644\pi\)
0.968304 0.249773i \(-0.0803561\pi\)
\(84\) 0 0
\(85\) −1.35911e7 −0.260363
\(86\) 4.05392e7 3.59466e6i 0.741108 0.0657150i
\(87\) 0 0
\(88\) 9.81968e6 2.66826e6i 0.163745 0.0444937i
\(89\) −3.86749e7 −0.616410 −0.308205 0.951320i \(-0.599728\pi\)
−0.308205 + 0.951320i \(0.599728\pi\)
\(90\) 0 0
\(91\) 1.08803e8i 1.58663i
\(92\) 2.60072e6 + 1.45497e7i 0.0363030 + 0.203096i
\(93\) 0 0
\(94\) −9.02045e7 + 7.99855e6i −1.15536 + 0.102447i
\(95\) 6.75057e7i 0.828793i
\(96\) 0 0
\(97\) −9.46443e7 −1.06907 −0.534537 0.845145i \(-0.679514\pi\)
−0.534537 + 0.845145i \(0.679514\pi\)
\(98\) −1.65192e6 1.86298e7i −0.0179096 0.201978i
\(99\) 0 0
\(100\) −1.96879e7 + 3.51918e6i −0.196879 + 0.0351918i
\(101\) 6.52649e7 0.627183 0.313591 0.949558i \(-0.398468\pi\)
0.313591 + 0.949558i \(0.398468\pi\)
\(102\) 0 0
\(103\) 1.47000e8i 1.30607i −0.757326 0.653037i \(-0.773495\pi\)
0.757326 0.653037i \(-0.226505\pi\)
\(104\) −4.43793e7 1.63324e8i −0.379356 1.39610i
\(105\) 0 0
\(106\) −1.61531e7 1.82169e8i −0.127948 1.44295i
\(107\) 2.42429e8i 1.84948i 0.380603 + 0.924739i \(0.375716\pi\)
−0.380603 + 0.924739i \(0.624284\pi\)
\(108\) 0 0
\(109\) −5.93486e7 −0.420440 −0.210220 0.977654i \(-0.567418\pi\)
−0.210220 + 0.977654i \(0.567418\pi\)
\(110\) 1.10668e7 981304.i 0.0755875 0.00670244i
\(111\) 0 0
\(112\) 5.97827e7 + 1.61883e8i 0.379930 + 1.02880i
\(113\) −5.46199e7 −0.334994 −0.167497 0.985873i \(-0.553568\pi\)
−0.167497 + 0.985873i \(0.553568\pi\)
\(114\) 0 0
\(115\) 1.61375e7i 0.0922669i
\(116\) −1.83784e8 + 3.28511e7i −1.01502 + 0.181434i
\(117\) 0 0
\(118\) −3.39312e8 + 3.00873e7i −1.75014 + 0.155187i
\(119\) 1.28039e8i 0.638492i
\(120\) 0 0
\(121\) 2.08187e8 0.971208
\(122\) −3.72661e7 4.20273e8i −0.168219 1.89711i
\(123\) 0 0
\(124\) −6.07505e6 3.39867e7i −0.0256958 0.143755i
\(125\) −2.18366e7 −0.0894427
\(126\) 0 0
\(127\) 2.01099e8i 0.773026i −0.922284 0.386513i \(-0.873679\pi\)
0.922284 0.386513i \(-0.126321\pi\)
\(128\) −1.55769e8 2.18617e8i −0.580286 0.814413i
\(129\) 0 0
\(130\) −1.63213e7 1.84065e8i −0.0571455 0.644464i
\(131\) 4.36365e8i 1.48172i −0.671662 0.740858i \(-0.734419\pi\)
0.671662 0.740858i \(-0.265581\pi\)
\(132\) 0 0
\(133\) −6.35959e8 −2.03246
\(134\) 2.45409e7 2.17607e6i 0.0761151 0.00674922i
\(135\) 0 0
\(136\) −5.22254e7 1.92199e8i −0.152660 0.561818i
\(137\) −4.48301e8 −1.27259 −0.636293 0.771447i \(-0.719533\pi\)
−0.636293 + 0.771447i \(0.719533\pi\)
\(138\) 0 0
\(139\) 4.73879e8i 1.26943i −0.772747 0.634714i \(-0.781118\pi\)
0.772747 0.634714i \(-0.218882\pi\)
\(140\) 3.31535e7 + 1.85477e8i 0.0863014 + 0.482811i
\(141\) 0 0
\(142\) 3.29264e8 2.91963e7i 0.809825 0.0718082i
\(143\) 1.02651e8i 0.245482i
\(144\) 0 0
\(145\) −2.03842e8 −0.461128
\(146\) 3.55130e7 + 4.00502e8i 0.0781584 + 0.881440i
\(147\) 0 0
\(148\) −4.23800e8 + 7.57534e7i −0.883312 + 0.157890i
\(149\) 2.98504e8 0.605627 0.302814 0.953050i \(-0.402074\pi\)
0.302814 + 0.953050i \(0.402074\pi\)
\(150\) 0 0
\(151\) 7.25032e8i 1.39460i 0.716780 + 0.697299i \(0.245615\pi\)
−0.716780 + 0.697299i \(0.754385\pi\)
\(152\) 9.54634e8 2.59399e8i 1.78839 0.485952i
\(153\) 0 0
\(154\) −9.24468e6 1.04258e8i −0.0164365 0.185364i
\(155\) 3.76958e7i 0.0653080i
\(156\) 0 0
\(157\) −6.70288e8 −1.10322 −0.551611 0.834101i \(-0.685987\pi\)
−0.551611 + 0.834101i \(0.685987\pi\)
\(158\) −3.11329e8 + 2.76060e7i −0.499564 + 0.0442970i
\(159\) 0 0
\(160\) −1.25420e8 2.64895e8i −0.191376 0.404197i
\(161\) 1.52029e8 0.226268
\(162\) 0 0
\(163\) 9.70735e8i 1.37515i 0.726113 + 0.687575i \(0.241325\pi\)
−0.726113 + 0.687575i \(0.758675\pi\)
\(164\) −1.91976e8 + 3.43152e7i −0.265381 + 0.0474364i
\(165\) 0 0
\(166\) 3.77840e8 3.35035e7i 0.497594 0.0441223i
\(167\) 7.98683e8i 1.02685i 0.858133 + 0.513427i \(0.171624\pi\)
−0.858133 + 0.513427i \(0.828376\pi\)
\(168\) 0 0
\(169\) 8.91594e8 1.09300
\(170\) −1.92069e7 2.16608e8i −0.0229965 0.259345i
\(171\) 0 0
\(172\) 1.14580e8 + 6.41013e8i 0.130916 + 0.732408i
\(173\) −6.00425e8 −0.670308 −0.335154 0.942163i \(-0.608788\pi\)
−0.335154 + 0.942163i \(0.608788\pi\)
\(174\) 0 0
\(175\) 2.05719e8i 0.219342i
\(176\) 5.64025e7 + 1.52730e8i 0.0587824 + 0.159175i
\(177\) 0 0
\(178\) −5.46552e7 6.16380e8i −0.0544442 0.614001i
\(179\) 1.15845e9i 1.12840i 0.825637 + 0.564202i \(0.190816\pi\)
−0.825637 + 0.564202i \(0.809184\pi\)
\(180\) 0 0
\(181\) −7.96493e8 −0.742109 −0.371055 0.928611i \(-0.621004\pi\)
−0.371055 + 0.928611i \(0.621004\pi\)
\(182\) −1.73405e9 + 1.53760e8i −1.58043 + 0.140139i
\(183\) 0 0
\(184\) −2.28209e8 + 6.20104e7i −0.199096 + 0.0540995i
\(185\) −4.70052e8 −0.401290
\(186\) 0 0
\(187\) 1.20800e8i 0.0987870i
\(188\) −2.54953e8 1.42633e9i −0.204094 1.14180i
\(189\) 0 0
\(190\) 1.07587e9 9.53988e7i 0.825554 0.0732029i
\(191\) 1.84245e9i 1.38440i 0.721706 + 0.692200i \(0.243358\pi\)
−0.721706 + 0.692200i \(0.756642\pi\)
\(192\) 0 0
\(193\) 2.34201e9 1.68795 0.843975 0.536382i \(-0.180209\pi\)
0.843975 + 0.536382i \(0.180209\pi\)
\(194\) −1.33751e8 1.50839e9i −0.0944256 1.06490i
\(195\) 0 0
\(196\) 2.94577e8 5.26550e7i 0.199606 0.0356792i
\(197\) 1.86381e9 1.23747 0.618737 0.785598i \(-0.287644\pi\)
0.618737 + 0.785598i \(0.287644\pi\)
\(198\) 0 0
\(199\) 1.82005e9i 1.16057i 0.814413 + 0.580286i \(0.197059\pi\)
−0.814413 + 0.580286i \(0.802941\pi\)
\(200\) −8.39097e7 3.08803e8i −0.0524436 0.193002i
\(201\) 0 0
\(202\) 9.22320e7 + 1.04016e9i 0.0553957 + 0.624732i
\(203\) 1.92035e9i 1.13083i
\(204\) 0 0
\(205\) −2.12927e8 −0.120563
\(206\) 2.34280e9 2.07739e8i 1.30097 0.115359i
\(207\) 0 0
\(208\) 2.54025e9 9.38102e8i 1.35713 0.501183i
\(209\) −6.00001e8 −0.314461
\(210\) 0 0
\(211\) 2.89129e9i 1.45869i −0.684148 0.729344i \(-0.739826\pi\)
0.684148 0.729344i \(-0.260174\pi\)
\(212\) 2.88048e9 5.14880e8i 1.42601 0.254896i
\(213\) 0 0
\(214\) −3.86370e9 + 3.42599e8i −1.84225 + 0.163355i
\(215\) 7.10970e8i 0.332734i
\(216\) 0 0
\(217\) −3.55125e8 −0.160156
\(218\) −8.38711e7 9.45866e8i −0.0371353 0.418797i
\(219\) 0 0
\(220\) 3.12790e7 + 1.74989e8i 0.0133525 + 0.0747001i
\(221\) 2.00917e9 0.842265
\(222\) 0 0
\(223\) 2.26023e9i 0.913973i 0.889474 + 0.456986i \(0.151071\pi\)
−0.889474 + 0.456986i \(0.848929\pi\)
\(224\) −2.49552e9 + 1.18156e9i −0.991219 + 0.469313i
\(225\) 0 0
\(226\) −7.71886e7 8.70503e8i −0.0295882 0.333685i
\(227\) 1.08021e9i 0.406823i 0.979093 + 0.203412i \(0.0652029\pi\)
−0.979093 + 0.203412i \(0.934797\pi\)
\(228\) 0 0
\(229\) 6.30352e8 0.229214 0.114607 0.993411i \(-0.463439\pi\)
0.114607 + 0.993411i \(0.463439\pi\)
\(230\) −2.57192e8 + 2.28055e7i −0.0919063 + 0.00814945i
\(231\) 0 0
\(232\) −7.83286e8 2.88263e9i −0.270376 0.995032i
\(233\) −1.17430e9 −0.398435 −0.199217 0.979955i \(-0.563840\pi\)
−0.199217 + 0.979955i \(0.563840\pi\)
\(234\) 0 0
\(235\) 1.58199e9i 0.518720i
\(236\) −9.59030e8 5.36526e9i −0.309161 1.72959i
\(237\) 0 0
\(238\) −2.04062e9 + 1.80944e8i −0.635996 + 0.0563946i
\(239\) 3.05182e9i 0.935334i 0.883905 + 0.467667i \(0.154905\pi\)
−0.883905 + 0.467667i \(0.845095\pi\)
\(240\) 0 0
\(241\) 2.81871e9 0.835570 0.417785 0.908546i \(-0.362807\pi\)
0.417785 + 0.908546i \(0.362807\pi\)
\(242\) 2.94209e8 + 3.31797e9i 0.0857817 + 0.967412i
\(243\) 0 0
\(244\) 6.64542e9 1.18786e9i 1.87484 0.335123i
\(245\) 3.26726e8 0.0906815
\(246\) 0 0
\(247\) 9.97938e9i 2.68112i
\(248\) 5.33076e8 1.44851e8i 0.140923 0.0382925i
\(249\) 0 0
\(250\) −3.08594e7 3.48020e8i −0.00790000 0.0890932i
\(251\) 2.92571e8i 0.0737116i −0.999321 0.0368558i \(-0.988266\pi\)
0.999321 0.0368558i \(-0.0117342\pi\)
\(252\) 0 0
\(253\) 1.43433e8 0.0350079
\(254\) 3.20500e9 2.84192e8i 0.770005 0.0682773i
\(255\) 0 0
\(256\) 3.26407e9 2.79152e9i 0.759976 0.649951i
\(257\) −3.03746e9 −0.696270 −0.348135 0.937444i \(-0.613185\pi\)
−0.348135 + 0.937444i \(0.613185\pi\)
\(258\) 0 0
\(259\) 4.42827e9i 0.984091i
\(260\) 2.91047e9 5.20241e8i 0.636898 0.113844i
\(261\) 0 0
\(262\) 6.95456e9 6.16669e8i 1.47593 0.130872i
\(263\) 1.69827e9i 0.354964i −0.984124 0.177482i \(-0.943205\pi\)
0.984124 0.177482i \(-0.0567951\pi\)
\(264\) 0 0
\(265\) 3.19485e9 0.647838
\(266\) −8.98734e8 1.01356e10i −0.179517 2.02452i
\(267\) 0 0
\(268\) 6.93621e7 + 3.88044e8i 0.0134457 + 0.0752215i
\(269\) 8.70547e8 0.166258 0.0831291 0.996539i \(-0.473509\pi\)
0.0831291 + 0.996539i \(0.473509\pi\)
\(270\) 0 0
\(271\) 7.36841e9i 1.36614i −0.730351 0.683072i \(-0.760643\pi\)
0.730351 0.683072i \(-0.239357\pi\)
\(272\) 2.98936e9 1.10396e9i 0.546138 0.201686i
\(273\) 0 0
\(274\) −6.33537e8 7.14478e9i −0.112401 1.26761i
\(275\) 1.94087e8i 0.0339364i
\(276\) 0 0
\(277\) 2.37339e9 0.403135 0.201568 0.979475i \(-0.435396\pi\)
0.201568 + 0.979475i \(0.435396\pi\)
\(278\) 7.55243e9 6.69684e8i 1.26447 0.112122i
\(279\) 0 0
\(280\) −2.90917e9 + 7.90498e8i −0.473301 + 0.128608i
\(281\) −5.50733e9 −0.883315 −0.441657 0.897184i \(-0.645609\pi\)
−0.441657 + 0.897184i \(0.645609\pi\)
\(282\) 0 0
\(283\) 4.55904e9i 0.710768i −0.934720 0.355384i \(-0.884350\pi\)
0.934720 0.355384i \(-0.115650\pi\)
\(284\) 9.30629e8 + 5.20638e9i 0.143055 + 0.800317i
\(285\) 0 0
\(286\) −1.63600e9 + 1.45066e8i −0.244523 + 0.0216822i
\(287\) 2.00594e9i 0.295659i
\(288\) 0 0
\(289\) −4.61137e9 −0.661056
\(290\) −2.88068e8 3.24872e9i −0.0407290 0.459325i
\(291\) 0 0
\(292\) −6.33280e9 + 1.13197e9i −0.871092 + 0.155706i
\(293\) 8.27611e9 1.12294 0.561469 0.827498i \(-0.310237\pi\)
0.561469 + 0.827498i \(0.310237\pi\)
\(294\) 0 0
\(295\) 5.95080e9i 0.785756i
\(296\) −1.80623e9 6.64725e9i −0.235291 0.865914i
\(297\) 0 0
\(298\) 4.21845e8 + 4.75740e9i 0.0534918 + 0.603260i
\(299\) 2.38562e9i 0.298480i
\(300\) 0 0
\(301\) 6.69791e9 0.815969
\(302\) −1.15552e10 + 1.02461e9i −1.38915 + 0.123178i
\(303\) 0 0
\(304\) 5.48324e9 + 1.48479e10i 0.642012 + 1.73848i
\(305\) 7.37067e9 0.851742
\(306\) 0 0
\(307\) 7.73582e9i 0.870869i 0.900221 + 0.435434i \(0.143405\pi\)
−0.900221 + 0.435434i \(0.856595\pi\)
\(308\) 1.64854e9 2.94674e8i 0.183188 0.0327445i
\(309\) 0 0
\(310\) 6.00776e8 5.32715e7i 0.0650527 0.00576831i
\(311\) 1.08068e10i 1.15520i 0.816321 + 0.577599i \(0.196010\pi\)
−0.816321 + 0.577599i \(0.803990\pi\)
\(312\) 0 0
\(313\) −4.73025e9 −0.492841 −0.246421 0.969163i \(-0.579254\pi\)
−0.246421 + 0.969163i \(0.579254\pi\)
\(314\) −9.47248e8 1.06827e10i −0.0974418 1.09891i
\(315\) 0 0
\(316\) −8.79938e8 4.92279e9i −0.0882478 0.493700i
\(317\) 5.44758e9 0.539469 0.269735 0.962935i \(-0.413064\pi\)
0.269735 + 0.962935i \(0.413064\pi\)
\(318\) 0 0
\(319\) 1.81178e9i 0.174961i
\(320\) 4.04451e9 2.37322e9i 0.385714 0.226328i
\(321\) 0 0
\(322\) 2.14846e8 + 2.42295e9i 0.0199850 + 0.225383i
\(323\) 1.17437e10i 1.07893i
\(324\) 0 0
\(325\) 3.22811e9 0.289344
\(326\) −1.54711e10 + 1.37184e9i −1.36978 + 0.121460i
\(327\) 0 0
\(328\) −8.18197e8 3.01111e9i −0.0706907 0.260154i
\(329\) −1.49036e10 −1.27206
\(330\) 0 0
\(331\) 8.65354e8i 0.0720911i −0.999350 0.0360456i \(-0.988524\pi\)
0.999350 0.0360456i \(-0.0114761\pi\)
\(332\) 1.06792e9 + 5.97446e9i 0.0878997 + 0.491752i
\(333\) 0 0
\(334\) −1.27290e10 + 1.12870e9i −1.02284 + 0.0906966i
\(335\) 4.30393e8i 0.0341732i
\(336\) 0 0
\(337\) 8.64475e8 0.0670244 0.0335122 0.999438i \(-0.489331\pi\)
0.0335122 + 0.999438i \(0.489331\pi\)
\(338\) 1.26000e9 + 1.42097e10i 0.0965389 + 1.08873i
\(339\) 0 0
\(340\) 3.42504e9 6.12218e8i 0.256301 0.0458132i
\(341\) −3.35046e8 −0.0247792
\(342\) 0 0
\(343\) 1.21018e10i 0.874329i
\(344\) −1.00542e10 + 2.73199e9i −0.717982 + 0.195094i
\(345\) 0 0
\(346\) −8.48518e8 9.56926e9i −0.0592048 0.667689i
\(347\) 1.10077e10i 0.759239i 0.925143 + 0.379620i \(0.123945\pi\)
−0.925143 + 0.379620i \(0.876055\pi\)
\(348\) 0 0
\(349\) −1.99631e10 −1.34563 −0.672816 0.739810i \(-0.734915\pi\)
−0.672816 + 0.739810i \(0.734915\pi\)
\(350\) −3.27863e9 + 2.90721e8i −0.218484 + 0.0193733i
\(351\) 0 0
\(352\) −2.35442e9 + 1.11475e9i −0.153361 + 0.0726118i
\(353\) −1.32468e10 −0.853126 −0.426563 0.904458i \(-0.640276\pi\)
−0.426563 + 0.904458i \(0.640276\pi\)
\(354\) 0 0
\(355\) 5.77457e9i 0.363586i
\(356\) 9.74630e9 1.74213e9i 0.606792 0.108463i
\(357\) 0 0
\(358\) −1.84627e10 + 1.63711e9i −1.12399 + 0.0996659i
\(359\) 2.59685e9i 0.156340i −0.996940 0.0781699i \(-0.975092\pi\)
0.996940 0.0781699i \(-0.0249076\pi\)
\(360\) 0 0
\(361\) −4.13463e10 −2.43449
\(362\) −1.12560e9 1.26941e10i −0.0655466 0.739209i
\(363\) 0 0
\(364\) −4.90109e9 2.74190e10i −0.279182 1.56188i
\(365\) −7.02393e9 −0.395739
\(366\) 0 0
\(367\) 3.62330e9i 0.199728i 0.995001 + 0.0998642i \(0.0318408\pi\)
−0.995001 + 0.0998642i \(0.968159\pi\)
\(368\) −1.31079e9 3.54945e9i −0.0714732 0.193539i
\(369\) 0 0
\(370\) −6.64275e8 7.49144e9i −0.0354439 0.399722i
\(371\) 3.00981e10i 1.58870i
\(372\) 0 0
\(373\) 4.15162e9 0.214478 0.107239 0.994233i \(-0.465799\pi\)
0.107239 + 0.994233i \(0.465799\pi\)
\(374\) −1.92524e9 + 1.70714e8i −0.0984009 + 0.00872533i
\(375\) 0 0
\(376\) 2.23718e10 6.07899e9i 1.11931 0.304145i
\(377\) 3.01339e10 1.49173
\(378\) 0 0
\(379\) 1.89551e10i 0.918692i −0.888257 0.459346i \(-0.848084\pi\)
0.888257 0.459346i \(-0.151916\pi\)
\(380\) 3.04083e9 + 1.70118e10i 0.145834 + 0.815862i
\(381\) 0 0
\(382\) −2.93639e10 + 2.60374e9i −1.37899 + 0.122277i
\(383\) 8.87673e9i 0.412532i −0.978496 0.206266i \(-0.933869\pi\)
0.978496 0.206266i \(-0.0661313\pi\)
\(384\) 0 0
\(385\) 1.82846e9 0.0832227
\(386\) 3.30972e9 + 3.73257e10i 0.149088 + 1.68135i
\(387\) 0 0
\(388\) 2.38509e10 4.26330e9i 1.05239 0.188113i
\(389\) −2.05595e10 −0.897872 −0.448936 0.893564i \(-0.648197\pi\)
−0.448936 + 0.893564i \(0.648197\pi\)
\(390\) 0 0
\(391\) 2.80739e9i 0.120114i
\(392\) 1.25548e9 + 4.62040e9i 0.0531699 + 0.195675i
\(393\) 0 0
\(394\) 2.63393e9 + 2.97044e10i 0.109300 + 1.23264i
\(395\) 5.46004e9i 0.224289i
\(396\) 0 0
\(397\) 2.04868e10 0.824733 0.412366 0.911018i \(-0.364702\pi\)
0.412366 + 0.911018i \(0.364702\pi\)
\(398\) −2.90071e10 + 2.57209e9i −1.15604 + 0.102507i
\(399\) 0 0
\(400\) 4.80295e9 1.77371e9i 0.187615 0.0692854i
\(401\) 7.30576e9 0.282545 0.141273 0.989971i \(-0.454881\pi\)
0.141273 + 0.989971i \(0.454881\pi\)
\(402\) 0 0
\(403\) 5.57258e9i 0.211269i
\(404\) −1.64471e10 + 2.93989e9i −0.617397 + 0.110358i
\(405\) 0 0
\(406\) −3.06056e10 + 2.71384e9i −1.12641 + 0.0998802i
\(407\) 4.17789e9i 0.152258i
\(408\) 0 0
\(409\) −1.05889e10 −0.378406 −0.189203 0.981938i \(-0.560590\pi\)
−0.189203 + 0.981938i \(0.560590\pi\)
\(410\) −3.00907e8 3.39352e9i −0.0106487 0.120092i
\(411\) 0 0
\(412\) 6.62168e9 + 3.70448e10i 0.229815 + 1.28570i
\(413\) −5.60614e10 −1.92692
\(414\) 0 0
\(415\) 6.62649e9i 0.223404i
\(416\) 1.85408e10 + 3.91594e10i 0.619093 + 1.30756i
\(417\) 0 0
\(418\) −8.47919e8 9.56250e9i −0.0277747 0.313232i
\(419\) 2.61037e9i 0.0846928i 0.999103 + 0.0423464i \(0.0134833\pi\)
−0.999103 + 0.0423464i \(0.986517\pi\)
\(420\) 0 0
\(421\) 9.29505e9 0.295885 0.147943 0.988996i \(-0.452735\pi\)
0.147943 + 0.988996i \(0.452735\pi\)
\(422\) 4.60799e10 4.08596e9i 1.45299 0.128838i
\(423\) 0 0
\(424\) 1.22766e10 + 4.51800e10i 0.379852 + 1.39792i
\(425\) 3.79883e9 0.116438
\(426\) 0 0
\(427\) 6.94377e10i 2.08874i
\(428\) −1.09203e10 6.10934e10i −0.325432 1.82062i
\(429\) 0 0
\(430\) −1.13311e10 + 1.00474e9i −0.331434 + 0.0293886i
\(431\) 1.86560e10i 0.540642i −0.962770 0.270321i \(-0.912870\pi\)
0.962770 0.270321i \(-0.0871298\pi\)
\(432\) 0 0
\(433\) −1.66970e10 −0.474994 −0.237497 0.971388i \(-0.576327\pi\)
−0.237497 + 0.971388i \(0.576327\pi\)
\(434\) −5.01861e8 5.65980e9i −0.0141457 0.159530i
\(435\) 0 0
\(436\) 1.49562e10 2.67339e9i 0.413880 0.0739802i
\(437\) 1.39440e10 0.382351
\(438\) 0 0
\(439\) 5.48360e9i 0.147641i 0.997272 + 0.0738206i \(0.0235192\pi\)
−0.997272 + 0.0738206i \(0.976481\pi\)
\(440\) −2.74469e9 + 7.45802e8i −0.0732288 + 0.0198982i
\(441\) 0 0
\(442\) 2.83936e9 + 3.20212e10i 0.0743928 + 0.838973i
\(443\) 5.97812e9i 0.155221i −0.996984 0.0776104i \(-0.975271\pi\)
0.996984 0.0776104i \(-0.0247290\pi\)
\(444\) 0 0
\(445\) 1.08100e10 0.275667
\(446\) −3.60223e10 + 3.19415e9i −0.910401 + 0.0807264i
\(447\) 0 0
\(448\) −2.23577e10 3.81026e10i −0.555028 0.945893i
\(449\) 3.11696e10 0.766913 0.383456 0.923559i \(-0.374734\pi\)
0.383456 + 0.923559i \(0.374734\pi\)
\(450\) 0 0
\(451\) 1.89253e9i 0.0457442i
\(452\) 1.37645e10 2.46038e9i 0.329767 0.0589452i
\(453\) 0 0
\(454\) −1.72158e10 + 1.52655e9i −0.405233 + 0.0359325i
\(455\) 3.04114e10i 0.709563i
\(456\) 0 0
\(457\) −4.33966e9 −0.0994927 −0.0497463 0.998762i \(-0.515841\pi\)
−0.0497463 + 0.998762i \(0.515841\pi\)
\(458\) 8.90810e8 + 1.00462e10i 0.0202453 + 0.228318i
\(459\) 0 0
\(460\) −7.26924e8 4.06675e9i −0.0162352 0.0908273i
\(461\) 5.16164e10 1.14284 0.571418 0.820659i \(-0.306393\pi\)
0.571418 + 0.820659i \(0.306393\pi\)
\(462\) 0 0
\(463\) 6.86820e10i 1.49458i −0.664499 0.747289i \(-0.731355\pi\)
0.664499 0.747289i \(-0.268645\pi\)
\(464\) 4.48349e10 1.65573e10i 0.967263 0.357205i
\(465\) 0 0
\(466\) −1.65952e9 1.87154e10i −0.0351916 0.396877i
\(467\) 2.14596e10i 0.451185i −0.974222 0.225592i \(-0.927568\pi\)
0.974222 0.225592i \(-0.0724317\pi\)
\(468\) 0 0
\(469\) 4.05465e9 0.0838036
\(470\) 2.52129e10 2.23566e9i 0.516692 0.0458158i
\(471\) 0 0
\(472\) 8.41534e10 2.28667e10i 1.69552 0.460718i
\(473\) 6.31921e9 0.126246
\(474\) 0 0
\(475\) 1.88684e10i 0.370648i
\(476\) −5.76759e9 3.22666e10i −0.112348 0.628530i
\(477\) 0 0
\(478\) −4.86382e10 + 4.31281e9i −0.931679 + 0.0826131i
\(479\) 8.24617e10i 1.56643i −0.621753 0.783213i \(-0.713579\pi\)
0.621753 0.783213i \(-0.286421\pi\)
\(480\) 0 0
\(481\) 6.94878e10 1.29816
\(482\) 3.98339e9 + 4.49231e10i 0.0738014 + 0.832304i
\(483\) 0 0
\(484\) −5.24643e10 + 9.37789e9i −0.956055 + 0.170893i
\(485\) 2.64539e10 0.478104
\(486\) 0 0
\(487\) 2.94674e9i 0.0523874i 0.999657 + 0.0261937i \(0.00833866\pi\)
−0.999657 + 0.0261937i \(0.991661\pi\)
\(488\) 2.83227e10 + 1.04233e11i 0.499408 + 1.83791i
\(489\) 0 0
\(490\) 4.61727e8 + 5.20718e9i 0.00800942 + 0.0903271i
\(491\) 8.17812e10i 1.40711i −0.710642 0.703554i \(-0.751595\pi\)
0.710642 0.703554i \(-0.248405\pi\)
\(492\) 0 0
\(493\) 3.54616e10 0.600302
\(494\) −1.59046e11 + 1.41028e10i −2.67064 + 0.236809i
\(495\) 0 0
\(496\) 3.06189e9 + 8.29118e9i 0.0505898 + 0.136990i
\(497\) 5.44012e10 0.891626
\(498\) 0 0
\(499\) 4.69562e10i 0.757340i −0.925532 0.378670i \(-0.876382\pi\)
0.925532 0.378670i \(-0.123618\pi\)
\(500\) 5.50295e9 9.83641e8i 0.0880472 0.0157383i
\(501\) 0 0
\(502\) 4.66284e9 4.13460e8i 0.0734236 0.00651056i
\(503\) 8.89245e10i 1.38915i −0.719420 0.694575i \(-0.755592\pi\)
0.719420 0.694575i \(-0.244408\pi\)
\(504\) 0 0
\(505\) −1.82421e10 −0.280485
\(506\) 2.02699e8 + 2.28596e9i 0.00309207 + 0.0348711i
\(507\) 0 0
\(508\) 9.05859e9 + 5.06780e10i 0.136021 + 0.760965i
\(509\) −1.30873e11 −1.94975 −0.974877 0.222745i \(-0.928498\pi\)
−0.974877 + 0.222745i \(0.928498\pi\)
\(510\) 0 0
\(511\) 6.61711e10i 0.970476i
\(512\) 4.91025e10 + 4.80761e10i 0.714535 + 0.699599i
\(513\) 0 0
\(514\) −4.29252e9 4.84094e10i −0.0614978 0.693549i
\(515\) 4.10877e10i 0.584094i
\(516\) 0 0
\(517\) −1.40610e10 −0.196813
\(518\) −7.05754e10 + 6.25801e9i −0.980245 + 0.0869195i
\(519\) 0 0
\(520\) 1.24044e10 + 4.56504e10i 0.169653 + 0.624354i
\(521\) −7.03085e10 −0.954238 −0.477119 0.878839i \(-0.658319\pi\)
−0.477119 + 0.878839i \(0.658319\pi\)
\(522\) 0 0
\(523\) 7.40744e10i 0.990060i 0.868876 + 0.495030i \(0.164843\pi\)
−0.868876 + 0.495030i \(0.835157\pi\)
\(524\) 1.96563e10 + 1.09967e11i 0.260721 + 1.45860i
\(525\) 0 0
\(526\) 2.70661e10 2.39999e9i 0.353577 0.0313521i
\(527\) 6.55779e9i 0.0850189i
\(528\) 0 0
\(529\) 7.49776e10 0.957434
\(530\) 4.51494e9 + 5.09178e10i 0.0572201 + 0.645306i
\(531\) 0 0
\(532\) 1.60265e11 2.86471e10i 2.00075 0.357630i
\(533\) 3.14770e10 0.390018
\(534\) 0 0
\(535\) 6.77609e10i 0.827111i
\(536\) −6.08642e9 + 1.65384e9i −0.0737399 + 0.0200370i
\(537\) 0 0
\(538\) 1.23025e9 + 1.38743e10i 0.0146847 + 0.165608i
\(539\) 2.90399e9i 0.0344064i
\(540\) 0 0
\(541\) 3.35458e9 0.0391605 0.0195803 0.999808i \(-0.493767\pi\)
0.0195803 + 0.999808i \(0.493767\pi\)
\(542\) 1.17434e11 1.04130e10i 1.36081 0.120664i
\(543\) 0 0
\(544\) 2.18188e10 + 4.60827e10i 0.249135 + 0.526190i
\(545\) 1.65884e10 0.188027
\(546\) 0 0
\(547\) 1.13812e11i 1.27128i 0.771987 + 0.635638i \(0.219263\pi\)
−0.771987 + 0.635638i \(0.780737\pi\)
\(548\) 1.12974e11 2.01939e10i 1.25273 0.223923i
\(549\) 0 0
\(550\) −3.09325e9 + 2.74283e8i −0.0338038 + 0.00299742i
\(551\) 1.76134e11i 1.91090i
\(552\) 0 0
\(553\) −5.14380e10 −0.550026
\(554\) 3.35407e9 + 3.78259e10i 0.0356068 + 0.401560i
\(555\) 0 0
\(556\) 2.13461e10 + 1.19420e11i 0.223367 + 1.24962i
\(557\) 1.05403e11 1.09505 0.547524 0.836790i \(-0.315570\pi\)
0.547524 + 0.836790i \(0.315570\pi\)
\(558\) 0 0
\(559\) 1.05103e11i 1.07638i
\(560\) −1.67098e10 4.52477e10i −0.169910 0.460092i
\(561\) 0 0
\(562\) −7.78293e9 8.77728e10i −0.0780185 0.879862i
\(563\) 7.97945e10i 0.794217i 0.917772 + 0.397108i \(0.129986\pi\)
−0.917772 + 0.397108i \(0.870014\pi\)
\(564\) 0 0
\(565\) 1.52667e10 0.149814
\(566\) 7.26596e10 6.44282e9i 0.707990 0.0627784i
\(567\) 0 0
\(568\) −8.16613e10 + 2.21895e10i −0.784554 + 0.213184i
\(569\) 4.57243e10 0.436212 0.218106 0.975925i \(-0.430012\pi\)
0.218106 + 0.975925i \(0.430012\pi\)
\(570\) 0 0
\(571\) 2.16780e10i 0.203927i −0.994788 0.101964i \(-0.967487\pi\)
0.994788 0.101964i \(-0.0325126\pi\)
\(572\) −4.62398e9 2.58687e10i −0.0431948 0.241652i
\(573\) 0 0
\(574\) −3.19697e10 + 2.83479e9i −0.294504 + 0.0261140i
\(575\) 4.51058e9i 0.0412630i
\(576\) 0 0
\(577\) 1.69273e11 1.52716 0.763579 0.645715i \(-0.223440\pi\)
0.763579 + 0.645715i \(0.223440\pi\)
\(578\) −6.51676e9 7.34935e10i −0.0583876 0.658472i
\(579\) 0 0
\(580\) 5.13693e10 9.18215e9i 0.453933 0.0811395i
\(581\) 6.24269e10 0.547857
\(582\) 0 0
\(583\) 2.83963e10i 0.245803i
\(584\) −2.69903e10 9.93290e10i −0.232036 0.853935i
\(585\) 0 0
\(586\) 1.16958e10 + 1.31900e11i 0.0991831 + 1.11855i
\(587\) 3.75401e10i 0.316187i −0.987424 0.158093i \(-0.949465\pi\)
0.987424 0.158093i \(-0.0505347\pi\)
\(588\) 0 0
\(589\) −3.25719e10 −0.270634
\(590\) 9.48407e10 8.40965e9i 0.782685 0.0694016i
\(591\) 0 0
\(592\) 1.03388e11 3.81806e10i 0.841748 0.310854i
\(593\) −1.04118e11 −0.841994 −0.420997 0.907062i \(-0.638320\pi\)
−0.420997 + 0.907062i \(0.638320\pi\)
\(594\) 0 0
\(595\) 3.57881e10i 0.285542i
\(596\) −7.52248e10 + 1.34463e10i −0.596178 + 0.106566i
\(597\) 0 0
\(598\) 3.80207e10 3.37134e9i 0.297314 0.0263632i
\(599\) 4.81442e10i 0.373970i −0.982363 0.186985i \(-0.940128\pi\)
0.982363 0.186985i \(-0.0598716\pi\)
\(600\) 0 0
\(601\) −1.48443e11 −1.13779 −0.568896 0.822410i \(-0.692629\pi\)
−0.568896 + 0.822410i \(0.692629\pi\)
\(602\) 9.46546e9 + 1.06748e11i 0.0720702 + 0.812780i
\(603\) 0 0
\(604\) −3.26594e10 1.82712e11i −0.245392 1.37284i
\(605\) −5.81901e10 −0.434337
\(606\) 0 0
\(607\) 5.44460e10i 0.401062i −0.979687 0.200531i \(-0.935733\pi\)
0.979687 0.200531i \(-0.0642667\pi\)
\(608\) −2.28888e11 + 1.08372e11i −1.67498 + 0.793054i
\(609\) 0 0
\(610\) 1.04162e10 + 1.17470e11i 0.0752298 + 0.848413i
\(611\) 2.33866e11i 1.67804i
\(612\) 0 0
\(613\) 1.16278e11 0.823484 0.411742 0.911301i \(-0.364921\pi\)
0.411742 + 0.911301i \(0.364921\pi\)
\(614\) −1.23289e11 + 1.09322e10i −0.867465 + 0.0769192i
\(615\) 0 0
\(616\) 7.02607e9 + 2.58572e10i 0.0487966 + 0.179580i
\(617\) 4.87411e10 0.336321 0.168161 0.985760i \(-0.446217\pi\)
0.168161 + 0.985760i \(0.446217\pi\)
\(618\) 0 0
\(619\) 4.92280e10i 0.335312i 0.985846 + 0.167656i \(0.0536198\pi\)
−0.985846 + 0.167656i \(0.946380\pi\)
\(620\) 1.69803e9 + 9.49956e9i 0.0114915 + 0.0642890i
\(621\) 0 0
\(622\) −1.72233e11 + 1.52721e10i −1.15068 + 0.102033i
\(623\) 1.01839e11i 0.676022i
\(624\) 0 0
\(625\) 6.10352e9 0.0400000
\(626\) −6.68477e9 7.53882e10i −0.0435300 0.490915i
\(627\) 0 0
\(628\) 1.68916e11 3.01935e10i 1.08601 0.194122i
\(629\) 8.17731e10 0.522406
\(630\) 0 0
\(631\) 1.10376e11i 0.696240i 0.937450 + 0.348120i \(0.113180\pi\)
−0.937450 + 0.348120i \(0.886820\pi\)
\(632\) 7.72132e10 2.09808e10i 0.483976 0.131509i
\(633\) 0 0
\(634\) 7.69850e9 + 8.68207e10i 0.0476485 + 0.537361i
\(635\) 5.62088e10i 0.345708i
\(636\) 0 0
\(637\) −4.82999e10 −0.293352
\(638\) −2.88751e10 + 2.56039e9i −0.174277 + 0.0154534i
\(639\) 0 0
\(640\) 4.35388e10 + 6.11054e10i 0.259512 + 0.364217i
\(641\) −2.15342e11 −1.27554 −0.637772 0.770225i \(-0.720144\pi\)
−0.637772 + 0.770225i \(0.720144\pi\)
\(642\) 0 0
\(643\) 1.22051e11i 0.713996i 0.934105 + 0.356998i \(0.116200\pi\)
−0.934105 + 0.356998i \(0.883800\pi\)
\(644\) −3.83121e10 + 6.84821e9i −0.222737 + 0.0398138i
\(645\) 0 0
\(646\) −1.87165e11 + 1.65962e10i −1.07472 + 0.0952966i
\(647\) 2.92452e11i 1.66893i −0.551064 0.834463i \(-0.685778\pi\)
0.551064 0.834463i \(-0.314222\pi\)
\(648\) 0 0
\(649\) −5.28916e10 −0.298132
\(650\) 4.56195e9 + 5.14479e10i 0.0255562 + 0.288213i
\(651\) 0 0
\(652\) −4.37272e10 2.44631e11i −0.241970 1.35369i
\(653\) 2.80990e10 0.154539 0.0772696 0.997010i \(-0.475380\pi\)
0.0772696 + 0.997010i \(0.475380\pi\)
\(654\) 0 0
\(655\) 1.21968e11i 0.662644i
\(656\) 4.68332e10 1.72953e10i 0.252894 0.0933925i
\(657\) 0 0
\(658\) −2.10618e10 2.37526e11i −0.112355 1.26709i
\(659\) 2.51394e11i 1.33295i −0.745529 0.666473i \(-0.767803\pi\)
0.745529 0.666473i \(-0.232197\pi\)
\(660\) 0 0
\(661\) −2.53415e11 −1.32748 −0.663738 0.747965i \(-0.731031\pi\)
−0.663738 + 0.747965i \(0.731031\pi\)
\(662\) 1.37915e10 1.22291e9i 0.0718094 0.00636743i
\(663\) 0 0
\(664\) −9.37086e10 + 2.54631e10i −0.482067 + 0.130990i
\(665\) 1.77756e11 0.908945
\(666\) 0 0
\(667\) 4.21056e10i 0.212734i
\(668\) −3.59771e10 2.01273e11i −0.180684 1.01083i
\(669\) 0 0
\(670\) −6.85938e9 + 6.08230e8i −0.0340397 + 0.00301834i
\(671\) 6.55116e10i 0.323168i
\(672\) 0 0
\(673\) −1.77857e11 −0.866981 −0.433491 0.901158i \(-0.642718\pi\)
−0.433491 + 0.901158i \(0.642718\pi\)
\(674\) 1.22167e9 + 1.37775e10i 0.00591991 + 0.0667624i
\(675\) 0 0
\(676\) −2.24687e11 + 4.01623e10i −1.07595 + 0.192323i
\(677\) 2.43910e11 1.16111 0.580556 0.814220i \(-0.302835\pi\)
0.580556 + 0.814220i \(0.302835\pi\)
\(678\) 0 0
\(679\) 2.49217e11i 1.17246i
\(680\) 1.45975e10 + 5.37212e10i 0.0682718 + 0.251252i
\(681\) 0 0
\(682\) −4.73485e8 5.33978e9i −0.00218861 0.0246823i
\(683\) 2.74209e11i 1.26008i 0.776562 + 0.630041i \(0.216962\pi\)
−0.776562 + 0.630041i \(0.783038\pi\)
\(684\) 0 0
\(685\) 1.25304e11 0.569118
\(686\) −1.92873e11 + 1.71023e10i −0.870912 + 0.0772249i
\(687\) 0 0
\(688\) −5.77495e10 1.56378e11i −0.257747 0.697944i
\(689\) −4.72295e11 −2.09573
\(690\) 0 0
\(691\) 1.07912e11i 0.473323i −0.971592 0.236661i \(-0.923947\pi\)
0.971592 0.236661i \(-0.0760532\pi\)
\(692\) 1.51311e11 2.70465e10i 0.659850 0.117947i
\(693\) 0 0
\(694\) −1.75435e11 + 1.55560e10i −0.756272 + 0.0670596i
\(695\) 1.32453e11i 0.567706i
\(696\) 0 0
\(697\) 3.70421e10 0.156951
\(698\) −2.82118e10 3.18161e11i −0.118853 1.34037i
\(699\) 0 0
\(700\) −9.26670e9 5.18423e10i −0.0385952 0.215919i
\(701\) 1.00364e11 0.415630 0.207815 0.978168i \(-0.433365\pi\)
0.207815 + 0.978168i \(0.433365\pi\)
\(702\) 0 0
\(703\) 4.06159e11i 1.66293i
\(704\) −2.10936e10 3.59482e10i −0.0858735 0.146348i
\(705\) 0 0
\(706\) −1.87204e10 2.11121e11i −0.0753521 0.849791i
\(707\) 1.71855e11i 0.687837i
\(708\) 0 0
\(709\) −4.36108e11 −1.72587 −0.862937 0.505311i \(-0.831378\pi\)
−0.862937 + 0.505311i \(0.831378\pi\)
\(710\) −9.20321e10 + 8.16060e9i −0.362165 + 0.0321136i
\(711\) 0 0
\(712\) 4.15386e10 + 1.52869e11i 0.161634 + 0.594841i
\(713\) 7.78647e9 0.0301288
\(714\) 0 0
\(715\) 2.86919e10i 0.109783i
\(716\) −5.21829e10 2.91936e11i −0.198553 1.11080i
\(717\) 0 0
\(718\) 4.13872e10 3.66986e9i 0.155729 0.0138087i
\(719\) 3.29910e11i 1.23447i 0.786780 + 0.617234i \(0.211747\pi\)
−0.786780 + 0.617234i \(0.788253\pi\)
\(720\) 0 0
\(721\) 3.87079e11 1.43238
\(722\) −5.84304e10 6.58956e11i −0.215026 2.42498i
\(723\) 0 0
\(724\) 2.00721e11 3.58784e10i 0.730531 0.130581i
\(725\) 5.69755e10 0.206222
\(726\) 0 0
\(727\) 2.87638e11i 1.02969i −0.857282 0.514847i \(-0.827849\pi\)
0.857282 0.514847i \(-0.172151\pi\)
\(728\) 4.30064e11 1.16859e11i 1.53111 0.416043i
\(729\) 0 0
\(730\) −9.92618e9 1.11944e11i −0.0349535 0.394192i
\(731\) 1.23685e11i 0.433158i
\(732\) 0 0
\(733\) 7.34639e10 0.254483 0.127241 0.991872i \(-0.459388\pi\)
0.127241 + 0.991872i \(0.459388\pi\)
\(734\) −5.77462e10 + 5.12043e9i −0.198948 + 0.0176410i
\(735\) 0 0
\(736\) 5.47168e10 2.59068e10i 0.186470 0.0882881i
\(737\) 3.82540e9 0.0129660
\(738\) 0 0
\(739\) 3.53166e11i 1.18413i −0.805889 0.592067i \(-0.798312\pi\)
0.805889 0.592067i \(-0.201688\pi\)
\(740\) 1.18456e11 2.11737e10i 0.395029 0.0706107i
\(741\) 0 0
\(742\) 4.79687e11 4.25344e10i 1.58249 0.140322i
\(743\) 2.51184e11i 0.824208i 0.911137 + 0.412104i \(0.135206\pi\)
−0.911137 + 0.412104i \(0.864794\pi\)
\(744\) 0 0
\(745\) −8.34345e10 −0.270845
\(746\) 5.86705e9 + 6.61663e10i 0.0189437 + 0.213639i
\(747\) 0 0
\(748\) −5.44149e9 3.04422e10i −0.0173825 0.0972456i
\(749\) −6.38363e11 −2.02834
\(750\) 0 0
\(751\) 5.06685e11i 1.59286i 0.604729 + 0.796431i \(0.293281\pi\)
−0.604729 + 0.796431i \(0.706719\pi\)
\(752\) 1.28499e11 + 3.47958e11i 0.401818 + 1.08807i
\(753\) 0 0
\(754\) 4.25852e10 + 4.80259e11i 0.131757 + 1.48590i
\(755\) 2.02653e11i 0.623684i
\(756\) 0 0
\(757\) 9.66712e10 0.294384 0.147192 0.989108i \(-0.452977\pi\)
0.147192 + 0.989108i \(0.452977\pi\)
\(758\) 3.02097e11 2.67873e10i 0.915102 0.0811432i
\(759\) 0 0
\(760\) −2.66828e11 + 7.25042e10i −0.799793 + 0.217324i
\(761\) −5.18752e11 −1.54675 −0.773376 0.633947i \(-0.781434\pi\)
−0.773376 + 0.633947i \(0.781434\pi\)
\(762\) 0 0
\(763\) 1.56276e11i 0.461100i
\(764\) −8.29940e10 4.64307e11i −0.243598 1.36280i
\(765\) 0 0
\(766\) 1.41473e11 1.25446e10i 0.410920 0.0364368i
\(767\) 8.79708e11i 2.54189i
\(768\) 0 0
\(769\) 1.06291e11 0.303943 0.151972 0.988385i \(-0.451438\pi\)
0.151972 + 0.988385i \(0.451438\pi\)
\(770\) 2.58397e9 + 2.91410e10i 0.00735062 + 0.0828975i
\(771\) 0 0
\(772\) −5.90200e11 + 1.05497e11i −1.66161 + 0.297010i
\(773\) 9.89630e10 0.277176 0.138588 0.990350i \(-0.455744\pi\)
0.138588 + 0.990350i \(0.455744\pi\)
\(774\) 0 0
\(775\) 1.05363e10i 0.0292066i
\(776\) 1.01652e11 + 3.74098e11i 0.280330 + 1.03167i
\(777\) 0 0
\(778\) −2.90546e10 3.27666e11i −0.0793043 0.894363i
\(779\) 1.83984e11i 0.499610i
\(780\) 0 0
\(781\) 5.13253e10 0.137952
\(782\) 4.47426e10 3.96738e9i 0.119645 0.0106091i
\(783\) 0 0
\(784\) −7.18632e10 + 2.65387e10i −0.190214 + 0.0702451i
\(785\) 1.87351e11 0.493376
\(786\) 0 0
\(787\) 3.29755e11i 0.859592i 0.902926 + 0.429796i \(0.141415\pi\)
−0.902926 + 0.429796i \(0.858585\pi\)
\(788\) −4.69690e11 + 8.39562e10i −1.21817 + 0.217745i
\(789\) 0 0
\(790\) 8.70192e10 7.71610e9i 0.223412 0.0198102i
\(791\) 1.43825e11i 0.367391i
\(792\) 0 0
\(793\) −1.08961e12 −2.75535
\(794\) 2.89519e10 + 3.26509e11i 0.0728443 + 0.821509i
\(795\) 0 0
\(796\) −8.19853e10 4.58664e11i −0.204213 1.14246i
\(797\) −6.85369e10 −0.169860 −0.0849300 0.996387i \(-0.527067\pi\)
−0.0849300 + 0.996387i \(0.527067\pi\)
\(798\) 0 0
\(799\) 2.75213e11i 0.675277i
\(800\) 3.50559e10 + 7.40403e10i 0.0855857 + 0.180763i
\(801\) 0 0
\(802\) 1.03245e10 + 1.16435e11i 0.0249557 + 0.281441i
\(803\) 6.24297e10i 0.150151i
\(804\) 0 0
\(805\) −4.24933e10 −0.101190
\(806\) −8.88128e10 + 7.87514e9i −0.210443 + 0.0186603i
\(807\) 0 0
\(808\) −7.00974e10 2.57971e11i −0.164459 0.605237i
\(809\) 7.62508e11 1.78012 0.890062 0.455840i \(-0.150661\pi\)
0.890062 + 0.455840i \(0.150661\pi\)
\(810\) 0 0
\(811\) 4.40805e11i 1.01897i 0.860478 + 0.509487i \(0.170165\pi\)
−0.860478 + 0.509487i \(0.829835\pi\)
\(812\) −8.65034e10 4.83940e11i −0.198980 1.11319i
\(813\) 0 0
\(814\) −6.65850e10 + 5.90418e9i −0.151663 + 0.0134481i
\(815\) 2.71329e11i 0.614986i
\(816\) 0 0
\(817\) 6.14330e11 1.37884
\(818\) −1.49642e10 1.68761e11i −0.0334226 0.376927i
\(819\) 0 0
\(820\) 5.36588e10 9.59140e9i 0.118682 0.0212142i
\(821\) 2.67657e11 0.589123 0.294562 0.955632i \(-0.404826\pi\)
0.294562 + 0.955632i \(0.404826\pi\)
\(822\) 0 0
\(823\) 3.84869e11i 0.838906i 0.907777 + 0.419453i \(0.137778\pi\)
−0.907777 + 0.419453i \(0.862222\pi\)
\(824\) −5.81042e11 + 1.57884e11i −1.26037 + 0.342476i
\(825\) 0 0
\(826\) −7.92257e10 8.93477e11i −0.170195 1.91939i
\(827\) 4.88174e11i 1.04364i 0.853054 + 0.521822i \(0.174747\pi\)
−0.853054 + 0.521822i \(0.825253\pi\)
\(828\) 0 0
\(829\) −1.47134e11 −0.311526 −0.155763 0.987794i \(-0.549784\pi\)
−0.155763 + 0.987794i \(0.549784\pi\)
\(830\) −1.05609e11 + 9.36452e9i −0.222531 + 0.0197321i
\(831\) 0 0
\(832\) −5.97900e11 + 3.50834e11i −1.24777 + 0.732164i
\(833\) −5.68392e10 −0.118050
\(834\) 0 0
\(835\) 2.23239e11i 0.459223i
\(836\) 1.51204e11 2.70273e10i 0.309555 0.0553323i
\(837\) 0 0
\(838\) −4.16027e10 + 3.68896e9i −0.0843617 + 0.00748046i
\(839\) 4.39919e11i 0.887821i −0.896071 0.443910i \(-0.853591\pi\)
0.896071 0.443910i \(-0.146409\pi\)
\(840\) 0 0
\(841\) 3.16120e10 0.0631929
\(842\) 1.31357e10 + 1.48140e11i 0.0261340 + 0.294729i
\(843\) 0 0
\(844\) 1.30240e11 + 7.28622e11i 0.256669 + 1.43593i
\(845\) −2.49208e11 −0.488804
\(846\) 0 0
\(847\) 5.48198e11i 1.06513i
\(848\) −7.02705e11 + 2.59506e11i −1.35891 + 0.501838i
\(849\) 0 0
\(850\) 5.36849e9 + 6.05437e10i 0.0102843 + 0.115983i
\(851\) 9.70941e10i 0.185129i
\(852\) 0 0
\(853\) 6.98819e11 1.31998 0.659992 0.751273i \(-0.270560\pi\)
0.659992 + 0.751273i \(0.270560\pi\)
\(854\) 1.10666e12 9.81291e10i 2.08058 0.184487i
\(855\) 0 0
\(856\) 9.58242e11 2.60379e11i 1.78476 0.484966i
\(857\) −3.28226e10 −0.0608485 −0.0304242 0.999537i \(-0.509686\pi\)
−0.0304242 + 0.999537i \(0.509686\pi\)
\(858\) 0 0
\(859\) 6.28697e11i 1.15470i −0.816497 0.577349i \(-0.804087\pi\)
0.816497 0.577349i \(-0.195913\pi\)
\(860\) −3.20260e10 1.79168e11i −0.0585476 0.327543i
\(861\) 0 0
\(862\) 2.97330e11 2.63646e10i 0.538529 0.0477521i
\(863\) 7.90308e11i 1.42480i 0.701775 + 0.712399i \(0.252391\pi\)
−0.701775 + 0.712399i \(0.747609\pi\)
\(864\) 0 0
\(865\) 1.67824e11 0.299771
\(866\) −2.35962e10 2.66109e11i −0.0419537 0.473138i
\(867\) 0 0
\(868\) 8.94936e10 1.59968e10i 0.157657 0.0281809i
\(869\) −4.85296e10 −0.0850997
\(870\) 0 0
\(871\) 6.36251e10i 0.110549i
\(872\) 6.37430e10 + 2.34586e11i 0.110247 + 0.405728i
\(873\) 0 0
\(874\) 1.97056e10 + 2.22232e11i 0.0337710 + 0.380857i
\(875\) 5.75001e10i 0.0980926i
\(876\) 0 0
\(877\) 7.21024e10 0.121885 0.0609427 0.998141i \(-0.480589\pi\)
0.0609427 + 0.998141i \(0.480589\pi\)
\(878\) −8.73947e10 + 7.74940e9i −0.147064 + 0.0130404i
\(879\) 0 0
\(880\) −1.57650e10 4.26894e10i −0.0262883 0.0711851i
\(881\) 5.33265e11 0.885196 0.442598 0.896720i \(-0.354057\pi\)
0.442598 + 0.896720i \(0.354057\pi\)
\(882\) 0 0
\(883\) 3.49301e11i 0.574589i 0.957842 + 0.287295i \(0.0927559\pi\)
−0.957842 + 0.287295i \(0.907244\pi\)
\(884\) −5.06324e11 + 9.05043e10i −0.829123 + 0.148204i
\(885\) 0 0
\(886\) 9.52761e10 8.44825e9i 0.154614 0.0137098i
\(887\) 2.17981e11i 0.352148i −0.984377 0.176074i \(-0.943660\pi\)
0.984377 0.176074i \(-0.0563398\pi\)
\(888\) 0 0
\(889\) 5.29532e11 0.847784
\(890\) 1.52766e10 + 1.72284e11i 0.0243482 + 0.274589i
\(891\) 0 0
\(892\) −1.01813e11 5.69591e11i −0.160822 0.899712i
\(893\) −1.36696e12 −2.14956
\(894\) 0 0
\(895\) 3.23796e11i 0.504637i
\(896\) 5.75663e11 4.10171e11i 0.893174 0.636405i
\(897\) 0 0
\(898\) 4.40488e10 + 4.96765e11i 0.0677374 + 0.763916i
\(899\) 9.83549e10i 0.150577i
\(900\) 0 0
\(901\) −5.55795e11 −0.843365
\(902\) −3.01621e10 + 2.67451e9i −0.0455654 + 0.00404034i
\(903\) 0 0
\(904\) 5.86642e10 + 2.15895e11i 0.0878414 + 0.323272i
\(905\) 2.22627e11 0.331881
\(906\) 0 0
\(907\) 6.26742e9i 0.00926104i 0.999989 + 0.00463052i \(0.00147395\pi\)
−0.999989 + 0.00463052i \(0.998526\pi\)
\(908\) −4.86587e10 2.72220e11i −0.0715842 0.400476i
\(909\) 0 0
\(910\) 4.84681e11 4.29773e10i 0.706790 0.0626719i
\(911\) 6.22008e11i 0.903073i 0.892253 + 0.451536i \(0.149124\pi\)
−0.892253 + 0.451536i \(0.850876\pi\)
\(912\) 0 0
\(913\) 5.88972e10 0.0847640
\(914\) −6.13279e9 6.91632e10i −0.00878766 0.0991038i
\(915\) 0 0
\(916\) −1.58852e11 + 2.83945e10i −0.225638 + 0.0403323i
\(917\) 1.14904e12 1.62501
\(918\) 0 0
\(919\) 8.27760e11i 1.16049i −0.814441 0.580246i \(-0.802956\pi\)
0.814441 0.580246i \(-0.197044\pi\)
\(920\) 6.37865e10 1.73324e10i 0.0890384 0.0241940i
\(921\) 0 0
\(922\) 7.29441e10 + 8.22635e11i 0.100941 + 1.13837i
\(923\) 8.53656e11i 1.17619i
\(924\) 0 0
\(925\) 1.31383e11 0.179463
\(926\) 1.09462e12 9.70610e10i 1.48874 0.132008i
\(927\) 0 0
\(928\) 3.27242e11 + 6.91156e11i 0.441243 + 0.931932i
\(929\) 6.50031e11 0.872713 0.436356 0.899774i \(-0.356269\pi\)
0.436356 + 0.899774i \(0.356269\pi\)
\(930\) 0 0
\(931\) 2.82315e11i 0.375781i
\(932\) 2.95931e11 5.28971e10i 0.392218 0.0701082i
\(933\) 0 0
\(934\) 3.42012e11 3.03266e10i 0.449421 0.0398508i
\(935\) 3.37646e10i 0.0441789i
\(936\) 0 0
\(937\) −6.60322e11 −0.856639 −0.428319 0.903627i \(-0.640894\pi\)
−0.428319 + 0.903627i \(0.640894\pi\)
\(938\) 5.73002e9 + 6.46209e10i 0.00740193 + 0.0834760i
\(939\) 0 0
\(940\) 7.12616e10 + 3.98671e11i 0.0912734 + 0.510626i
\(941\) 2.13315e11 0.272059 0.136029 0.990705i \(-0.456566\pi\)
0.136029 + 0.990705i \(0.456566\pi\)
\(942\) 0 0
\(943\) 4.39823e10i 0.0556200i
\(944\) 4.83362e11 + 1.30888e12i 0.608674 + 1.64820i
\(945\) 0 0
\(946\) 8.93027e9 + 1.00712e11i 0.0111506 + 0.125753i
\(947\) 1.23955e10i 0.0154121i 0.999970 + 0.00770607i \(0.00245294\pi\)
−0.999970 + 0.00770607i \(0.997547\pi\)
\(948\) 0 0
\(949\) 1.03835e12 1.28020
\(950\) −3.00715e11 + 2.66648e10i −0.369199 + 0.0327373i
\(951\) 0 0
\(952\) 5.06098e11 1.37520e11i 0.616150 0.167424i
\(953\) 1.59801e12 1.93734 0.968672 0.248344i \(-0.0798864\pi\)
0.968672 + 0.248344i \(0.0798864\pi\)
\(954\) 0 0
\(955\) 5.14980e11i 0.619122i
\(956\) −1.37471e11 7.69076e11i −0.164581 0.920741i
\(957\) 0 0
\(958\) 1.31423e12 1.16534e11i 1.56030 0.138354i
\(959\) 1.18046e12i 1.39566i
\(960\) 0 0
\(961\) 8.34703e11 0.978674
\(962\) 9.81999e10 + 1.10746e12i 0.114660 + 1.29309i
\(963\) 0 0
\(964\) −7.10332e11 + 1.26970e11i −0.822533 + 0.147026i
\(965\) −6.54612e11 −0.754875
\(966\) 0 0
\(967\) 4.54304e11i 0.519566i 0.965667 + 0.259783i \(0.0836510\pi\)
−0.965667 + 0.259783i \(0.916349\pi\)
\(968\) −2.23602e11 8.22896e11i −0.254668 0.937224i
\(969\) 0 0
\(970\) 3.73845e10 + 4.21608e11i 0.0422284 + 0.476236i
\(971\) 3.98175e11i 0.447917i 0.974599 + 0.223958i \(0.0718979\pi\)
−0.974599 + 0.223958i \(0.928102\pi\)
\(972\) 0 0
\(973\) 1.24782e12 1.39219
\(974\) −4.69636e10 + 4.16432e9i −0.0521826 + 0.00462710i
\(975\) 0 0
\(976\) −1.62118e12 + 5.98693e11i −1.78662 + 0.659789i
\(977\) −1.61846e12 −1.77633 −0.888165 0.459525i \(-0.848020\pi\)
−0.888165 + 0.459525i \(0.848020\pi\)
\(978\) 0 0
\(979\) 9.60806e10i 0.104594i
\(980\) −8.23367e10 + 1.47175e10i −0.0892667 + 0.0159562i
\(981\) 0 0
\(982\) 1.30339e12 1.15573e11i 1.40161 0.124282i
\(983\) 7.83368e10i 0.0838980i −0.999120 0.0419490i \(-0.986643\pi\)
0.999120 0.0419490i \(-0.0133567\pi\)
\(984\) 0 0
\(985\) −5.20950e11 −0.553416
\(986\) 5.01141e10 + 5.65167e11i 0.0530215 + 0.597956i
\(987\) 0 0
\(988\) −4.49526e11 2.51486e12i −0.471767 2.63929i
\(989\) −1.46858e11 −0.153502
\(990\) 0 0
\(991\) 1.11925e12i 1.16046i −0.814451 0.580232i \(-0.802962\pi\)
0.814451 0.580232i \(-0.197038\pi\)
\(992\) −1.27813e11 + 6.05159e10i −0.131987 + 0.0624917i
\(993\) 0 0
\(994\) 7.68795e10 + 8.67017e11i 0.0787526 + 0.888142i
\(995\) 5.08721e11i 0.519023i
\(996\) 0 0
\(997\) −8.38483e11 −0.848621 −0.424311 0.905517i \(-0.639483\pi\)
−0.424311 + 0.905517i \(0.639483\pi\)
\(998\) 7.48363e11 6.63583e10i 0.754380 0.0668918i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 180.9.c.a.91.10 16
3.2 odd 2 20.9.b.a.11.7 16
4.3 odd 2 inner 180.9.c.a.91.9 16
12.11 even 2 20.9.b.a.11.8 yes 16
15.2 even 4 100.9.d.c.99.31 32
15.8 even 4 100.9.d.c.99.2 32
15.14 odd 2 100.9.b.d.51.10 16
24.5 odd 2 320.9.b.d.191.6 16
24.11 even 2 320.9.b.d.191.11 16
60.23 odd 4 100.9.d.c.99.32 32
60.47 odd 4 100.9.d.c.99.1 32
60.59 even 2 100.9.b.d.51.9 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.9.b.a.11.7 16 3.2 odd 2
20.9.b.a.11.8 yes 16 12.11 even 2
100.9.b.d.51.9 16 60.59 even 2
100.9.b.d.51.10 16 15.14 odd 2
100.9.d.c.99.1 32 60.47 odd 4
100.9.d.c.99.2 32 15.8 even 4
100.9.d.c.99.31 32 15.2 even 4
100.9.d.c.99.32 32 60.23 odd 4
180.9.c.a.91.9 16 4.3 odd 2 inner
180.9.c.a.91.10 16 1.1 even 1 trivial
320.9.b.d.191.6 16 24.5 odd 2
320.9.b.d.191.11 16 24.11 even 2