Properties

Label 100.9.d.c.99.31
Level $100$
Weight $9$
Character 100.99
Analytic conductor $40.738$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [100,9,Mod(99,100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(100, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("100.99"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 100 = 2^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 100.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,104] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(40.7378610061\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.31
Character \(\chi\) \(=\) 100.99
Dual form 100.9.d.c.99.32

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(15.9375 - 1.41320i) q^{2} +39.9624 q^{3} +(252.006 - 45.0455i) q^{4} +(636.899 - 56.4746i) q^{6} -2633.20 q^{7} +(3952.68 - 1074.04i) q^{8} -4964.01 q^{9} -2484.31i q^{11} +(10070.7 - 1800.13i) q^{12} -41319.8i q^{13} +(-41966.5 + 3721.22i) q^{14} +(61477.8 - 22703.5i) q^{16} -48625.0i q^{17} +(-79113.7 + 7015.11i) q^{18} -241516. i q^{19} -105229. q^{21} +(-3510.82 - 39593.7i) q^{22} +57735.4 q^{23} +(157958. - 42921.4i) q^{24} +(-58392.9 - 658533. i) q^{26} -460567. q^{27} +(-663581. + 118614. i) q^{28} +729286. q^{29} +134865. i q^{31} +(947716. - 448716. i) q^{32} -99279.1i q^{33} +(-68716.6 - 774960. i) q^{34} +(-1.25096e6 + 223606. i) q^{36} +1.68171e6i q^{37} +(-341309. - 3.84915e6i) q^{38} -1.65124e6i q^{39} -761790. q^{41} +(-1.67708e6 + 148709. i) q^{42} -2.54364e6 q^{43} +(-111907. - 626061. i) q^{44} +(920156. - 81591.4i) q^{46} +5.65990e6 q^{47} +(2.45680e6 - 907284. i) q^{48} +1.16893e6 q^{49} -1.94317e6i q^{51} +(-1.86127e6 - 1.04128e7i) q^{52} -1.14302e7i q^{53} +(-7.34027e6 + 650871. i) q^{54} +(-1.04082e7 + 2.82817e6i) q^{56} -9.65155e6i q^{57} +(1.16230e7 - 1.03062e6i) q^{58} +2.12902e7i q^{59} -2.63701e7 q^{61} +(190590. + 2.14940e6i) q^{62} +1.30712e7 q^{63} +(1.44701e7 - 8.49070e6i) q^{64} +(-140301. - 1.58226e6i) q^{66} +1.53982e6 q^{67} +(-2.19034e6 - 1.22538e7i) q^{68} +2.30724e6 q^{69} +2.06597e7i q^{71} +(-1.96211e7 + 5.33157e6i) q^{72} -2.51296e7i q^{73} +(2.37658e6 + 2.68022e7i) q^{74} +(-1.08792e7 - 6.08634e7i) q^{76} +6.54169e6i q^{77} +(-2.33352e6 - 2.63165e7i) q^{78} -1.95344e7i q^{79} +1.41635e7 q^{81} +(-1.21410e7 + 1.07656e6i) q^{82} +2.37076e7 q^{83} +(-2.65183e7 + 4.74009e6i) q^{84} +(-4.05392e7 + 3.59466e6i) q^{86} +2.91440e7 q^{87} +(-2.66826e6 - 9.81968e6i) q^{88} -3.86749e7 q^{89} +1.08803e8i q^{91} +(1.45497e7 - 2.60072e6i) q^{92} +5.38951e6i q^{93} +(9.02045e7 - 7.99855e6i) q^{94} +(3.78730e7 - 1.79317e7i) q^{96} -9.46443e7i q^{97} +(1.86298e7 - 1.65192e6i) q^{98} +1.23322e7i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 104 q^{4} + 8736 q^{6} + 77600 q^{9} - 136944 q^{14} - 162848 q^{16} + 828992 q^{21} - 327584 q^{24} + 2074248 q^{26} - 5529792 q^{29} - 7587928 q^{34} - 10937832 q^{36} - 17152896 q^{41} - 33842400 q^{44}+ \cdots - 906779904 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/100\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(77\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 15.9375 1.41320i 0.996092 0.0883247i
\(3\) 39.9624 0.493363 0.246681 0.969097i \(-0.420660\pi\)
0.246681 + 0.969097i \(0.420660\pi\)
\(4\) 252.006 45.0455i 0.984397 0.175959i
\(5\) 0 0
\(6\) 636.899 56.4746i 0.491435 0.0435761i
\(7\) −2633.20 −1.09671 −0.548354 0.836246i \(-0.684745\pi\)
−0.548354 + 0.836246i \(0.684745\pi\)
\(8\) 3952.68 1074.04i 0.965009 0.262218i
\(9\) −4964.01 −0.756593
\(10\) 0 0
\(11\) 2484.31i 0.169682i −0.996395 0.0848410i \(-0.972962\pi\)
0.996395 0.0848410i \(-0.0270382\pi\)
\(12\) 10070.7 1800.13i 0.485665 0.0868116i
\(13\) 41319.8i 1.44672i −0.690471 0.723360i \(-0.742597\pi\)
0.690471 0.723360i \(-0.257403\pi\)
\(14\) −41966.5 + 3721.22i −1.09242 + 0.0968665i
\(15\) 0 0
\(16\) 61477.8 22703.5i 0.938077 0.346427i
\(17\) 48625.0i 0.582189i −0.956694 0.291095i \(-0.905981\pi\)
0.956694 0.291095i \(-0.0940194\pi\)
\(18\) −79113.7 + 7015.11i −0.753636 + 0.0668259i
\(19\) 241516.i 1.85324i −0.376002 0.926619i \(-0.622701\pi\)
0.376002 0.926619i \(-0.377299\pi\)
\(20\) 0 0
\(21\) −105229. −0.541075
\(22\) −3510.82 39593.7i −0.0149871 0.169019i
\(23\) 57735.4 0.206315 0.103158 0.994665i \(-0.467105\pi\)
0.103158 + 0.994665i \(0.467105\pi\)
\(24\) 157958. 42921.4i 0.476099 0.129369i
\(25\) 0 0
\(26\) −58392.9 658533.i −0.127781 1.44107i
\(27\) −460567. −0.866638
\(28\) −663581. + 118614.i −1.07960 + 0.192976i
\(29\) 729286. 1.03111 0.515556 0.856856i \(-0.327585\pi\)
0.515556 + 0.856856i \(0.327585\pi\)
\(30\) 0 0
\(31\) 134865.i 0.146033i 0.997331 + 0.0730165i \(0.0232626\pi\)
−0.997331 + 0.0730165i \(0.976737\pi\)
\(32\) 947716. 448716.i 0.903813 0.427929i
\(33\) 99279.1i 0.0837147i
\(34\) −68716.6 774960.i −0.0514217 0.579914i
\(35\) 0 0
\(36\) −1.25096e6 + 223606.i −0.744788 + 0.133129i
\(37\) 1.68171e6i 0.897313i 0.893704 + 0.448656i \(0.148097\pi\)
−0.893704 + 0.448656i \(0.851903\pi\)
\(38\) −341309. 3.84915e6i −0.163687 1.84599i
\(39\) 1.65124e6i 0.713758i
\(40\) 0 0
\(41\) −761790. −0.269588 −0.134794 0.990874i \(-0.543037\pi\)
−0.134794 + 0.990874i \(0.543037\pi\)
\(42\) −1.67708e6 + 148709.i −0.538961 + 0.0477903i
\(43\) −2.54364e6 −0.744016 −0.372008 0.928230i \(-0.621331\pi\)
−0.372008 + 0.928230i \(0.621331\pi\)
\(44\) −111907. 626061.i −0.0298571 0.167034i
\(45\) 0 0
\(46\) 920156. 81591.4i 0.205509 0.0182227i
\(47\) 5.65990e6 1.15989 0.579946 0.814655i \(-0.303074\pi\)
0.579946 + 0.814655i \(0.303074\pi\)
\(48\) 2.45680e6 907284.i 0.462812 0.170914i
\(49\) 1.16893e6 0.202770
\(50\) 0 0
\(51\) 1.94317e6i 0.287230i
\(52\) −1.86127e6 1.04128e7i −0.254564 1.42415i
\(53\) 1.14302e7i 1.44861i −0.689480 0.724305i \(-0.742161\pi\)
0.689480 0.724305i \(-0.257839\pi\)
\(54\) −7.34027e6 + 650871.i −0.863251 + 0.0765455i
\(55\) 0 0
\(56\) −1.04082e7 + 2.82817e6i −1.05833 + 0.287577i
\(57\) 9.65155e6i 0.914318i
\(58\) 1.16230e7 1.03062e6i 1.02708 0.0910727i
\(59\) 2.12902e7i 1.75700i 0.477740 + 0.878501i \(0.341456\pi\)
−0.477740 + 0.878501i \(0.658544\pi\)
\(60\) 0 0
\(61\) −2.63701e7 −1.90455 −0.952276 0.305238i \(-0.901264\pi\)
−0.952276 + 0.305238i \(0.901264\pi\)
\(62\) 190590. + 2.14940e6i 0.0128983 + 0.145462i
\(63\) 1.30712e7 0.829762
\(64\) 1.44701e7 8.49070e6i 0.862483 0.506085i
\(65\) 0 0
\(66\) −140301. 1.58226e6i −0.00739408 0.0833876i
\(67\) 1.53982e6 0.0764137 0.0382068 0.999270i \(-0.487835\pi\)
0.0382068 + 0.999270i \(0.487835\pi\)
\(68\) −2.19034e6 1.22538e7i −0.102441 0.573105i
\(69\) 2.30724e6 0.101788
\(70\) 0 0
\(71\) 2.06597e7i 0.813002i 0.913650 + 0.406501i \(0.133251\pi\)
−0.913650 + 0.406501i \(0.866749\pi\)
\(72\) −1.96211e7 + 5.33157e6i −0.730119 + 0.198392i
\(73\) 2.51296e7i 0.884899i −0.896793 0.442449i \(-0.854110\pi\)
0.896793 0.442449i \(-0.145890\pi\)
\(74\) 2.37658e6 + 2.68022e7i 0.0792549 + 0.893806i
\(75\) 0 0
\(76\) −1.08792e7 6.08634e7i −0.326094 1.82432i
\(77\) 6.54169e6i 0.186092i
\(78\) −2.33352e6 2.63165e7i −0.0630425 0.710968i
\(79\) 1.95344e7i 0.501525i −0.968049 0.250762i \(-0.919319\pi\)
0.968049 0.250762i \(-0.0806812\pi\)
\(80\) 0 0
\(81\) 1.41635e7 0.329027
\(82\) −1.21410e7 + 1.07656e6i −0.268534 + 0.0238113i
\(83\) 2.37076e7 0.499547 0.249773 0.968304i \(-0.419644\pi\)
0.249773 + 0.968304i \(0.419644\pi\)
\(84\) −2.65183e7 + 4.74009e6i −0.532633 + 0.0952071i
\(85\) 0 0
\(86\) −4.05392e7 + 3.59466e6i −0.741108 + 0.0657150i
\(87\) 2.91440e7 0.508712
\(88\) −2.66826e6 9.81968e6i −0.0444937 0.163745i
\(89\) −3.86749e7 −0.616410 −0.308205 0.951320i \(-0.599728\pi\)
−0.308205 + 0.951320i \(0.599728\pi\)
\(90\) 0 0
\(91\) 1.08803e8i 1.58663i
\(92\) 1.45497e7 2.60072e6i 0.203096 0.0363030i
\(93\) 5.38951e6i 0.0720473i
\(94\) 9.02045e7 7.99855e6i 1.15536 0.102447i
\(95\) 0 0
\(96\) 3.78730e7 1.79317e7i 0.445907 0.211124i
\(97\) 9.46443e7i 1.06907i −0.845145 0.534537i \(-0.820486\pi\)
0.845145 0.534537i \(-0.179514\pi\)
\(98\) 1.86298e7 1.65192e6i 0.201978 0.0179096i
\(99\) 1.23322e7i 0.128380i
\(100\) 0 0
\(101\) −6.52649e7 −0.627183 −0.313591 0.949558i \(-0.601532\pi\)
−0.313591 + 0.949558i \(0.601532\pi\)
\(102\) −2.74608e6 3.09692e7i −0.0253695 0.286108i
\(103\) −1.47000e8 −1.30607 −0.653037 0.757326i \(-0.726505\pi\)
−0.653037 + 0.757326i \(0.726505\pi\)
\(104\) −4.43793e7 1.63324e8i −0.379356 1.39610i
\(105\) 0 0
\(106\) −1.61531e7 1.82169e8i −0.127948 1.44295i
\(107\) 2.42429e8 1.84948 0.924739 0.380603i \(-0.124284\pi\)
0.924739 + 0.380603i \(0.124284\pi\)
\(108\) −1.16065e8 + 2.07465e7i −0.853116 + 0.152493i
\(109\) 5.93486e7 0.420440 0.210220 0.977654i \(-0.432582\pi\)
0.210220 + 0.977654i \(0.432582\pi\)
\(110\) 0 0
\(111\) 6.72051e7i 0.442701i
\(112\) −1.61883e8 + 5.97827e7i −1.02880 + 0.379930i
\(113\) 5.46199e7i 0.334994i −0.985873 0.167497i \(-0.946432\pi\)
0.985873 0.167497i \(-0.0535685\pi\)
\(114\) −1.36395e7 1.53821e8i −0.0807569 0.910745i
\(115\) 0 0
\(116\) 1.83784e8 3.28511e7i 1.01502 0.181434i
\(117\) 2.05112e8i 1.09458i
\(118\) 3.00873e7 + 3.39312e8i 0.155187 + 1.75014i
\(119\) 1.28039e8i 0.638492i
\(120\) 0 0
\(121\) 2.08187e8 0.971208
\(122\) −4.20273e8 + 3.72661e7i −1.89711 + 0.168219i
\(123\) −3.04430e7 −0.133005
\(124\) 6.07505e6 + 3.39867e7i 0.0256958 + 0.143755i
\(125\) 0 0
\(126\) 2.08322e8 1.84722e7i 0.826519 0.0732885i
\(127\) 2.01099e8 0.773026 0.386513 0.922284i \(-0.373679\pi\)
0.386513 + 0.922284i \(0.373679\pi\)
\(128\) 2.18617e8 1.55769e8i 0.814413 0.580286i
\(129\) −1.01650e8 −0.367070
\(130\) 0 0
\(131\) 4.36365e8i 1.48172i 0.671662 + 0.740858i \(0.265581\pi\)
−0.671662 + 0.740858i \(0.734419\pi\)
\(132\) −4.47208e6 2.50189e7i −0.0147304 0.0824086i
\(133\) 6.35959e8i 2.03246i
\(134\) 2.45409e7 2.17607e6i 0.0761151 0.00674922i
\(135\) 0 0
\(136\) −5.22254e7 1.92199e8i −0.152660 0.561818i
\(137\) 4.48301e8i 1.27259i 0.771447 + 0.636293i \(0.219533\pi\)
−0.771447 + 0.636293i \(0.780467\pi\)
\(138\) 3.67716e7 3.26059e6i 0.101390 0.00899041i
\(139\) 4.73879e8i 1.26943i 0.772747 + 0.634714i \(0.218882\pi\)
−0.772747 + 0.634714i \(0.781118\pi\)
\(140\) 0 0
\(141\) 2.26183e8 0.572248
\(142\) 2.91963e7 + 3.29264e8i 0.0718082 + 0.809825i
\(143\) −1.02651e8 −0.245482
\(144\) −3.05176e8 + 1.12700e8i −0.709743 + 0.262105i
\(145\) 0 0
\(146\) −3.55130e7 4.00502e8i −0.0781584 0.881440i
\(147\) 4.67132e7 0.100039
\(148\) 7.57534e7 + 4.23800e8i 0.157890 + 0.883312i
\(149\) 2.98504e8 0.605627 0.302814 0.953050i \(-0.402074\pi\)
0.302814 + 0.953050i \(0.402074\pi\)
\(150\) 0 0
\(151\) 7.25032e8i 1.39460i 0.716780 + 0.697299i \(0.245615\pi\)
−0.716780 + 0.697299i \(0.754385\pi\)
\(152\) −2.59399e8 9.54634e8i −0.485952 1.78839i
\(153\) 2.41375e8i 0.440480i
\(154\) 9.24468e6 + 1.04258e8i 0.0164365 + 0.185364i
\(155\) 0 0
\(156\) −7.43808e7 4.16121e8i −0.125592 0.702621i
\(157\) 6.70288e8i 1.10322i −0.834101 0.551611i \(-0.814013\pi\)
0.834101 0.551611i \(-0.185987\pi\)
\(158\) −2.76060e7 3.11329e8i −0.0442970 0.499564i
\(159\) 4.56779e8i 0.714690i
\(160\) 0 0
\(161\) −1.52029e8 −0.226268
\(162\) 2.25731e8 2.00158e7i 0.327741 0.0290612i
\(163\) 9.70735e8 1.37515 0.687575 0.726113i \(-0.258675\pi\)
0.687575 + 0.726113i \(0.258675\pi\)
\(164\) −1.91976e8 + 3.43152e7i −0.265381 + 0.0474364i
\(165\) 0 0
\(166\) 3.77840e8 3.35035e7i 0.497594 0.0441223i
\(167\) 7.98683e8 1.02685 0.513427 0.858133i \(-0.328376\pi\)
0.513427 + 0.858133i \(0.328376\pi\)
\(168\) −4.15935e8 + 1.13020e8i −0.522142 + 0.141880i
\(169\) −8.91594e8 −1.09300
\(170\) 0 0
\(171\) 1.19889e9i 1.40215i
\(172\) −6.41013e8 + 1.14580e8i −0.732408 + 0.130916i
\(173\) 6.00425e8i 0.670308i −0.942163 0.335154i \(-0.891212\pi\)
0.942163 0.335154i \(-0.108788\pi\)
\(174\) 4.64482e8 4.11862e7i 0.506724 0.0449319i
\(175\) 0 0
\(176\) −5.64025e7 1.52730e8i −0.0587824 0.159175i
\(177\) 8.50809e8i 0.866840i
\(178\) −6.16380e8 + 5.46552e7i −0.614001 + 0.0544442i
\(179\) 1.15845e9i 1.12840i 0.825637 + 0.564202i \(0.190816\pi\)
−0.825637 + 0.564202i \(0.809184\pi\)
\(180\) 0 0
\(181\) −7.96493e8 −0.742109 −0.371055 0.928611i \(-0.621004\pi\)
−0.371055 + 0.928611i \(0.621004\pi\)
\(182\) 1.53760e8 + 1.73405e9i 0.140139 + 1.58043i
\(183\) −1.05381e9 −0.939635
\(184\) 2.28209e8 6.20104e7i 0.199096 0.0540995i
\(185\) 0 0
\(186\) 7.61643e6 + 8.58952e7i 0.00636355 + 0.0717657i
\(187\) −1.20800e8 −0.0987870
\(188\) 1.42633e9 2.54953e8i 1.14180 0.204094i
\(189\) 1.21276e9 0.950449
\(190\) 0 0
\(191\) 1.84245e9i 1.38440i −0.721706 0.692200i \(-0.756642\pi\)
0.721706 0.692200i \(-0.243358\pi\)
\(192\) 5.78258e8 3.39309e8i 0.425517 0.249684i
\(193\) 2.34201e9i 1.68795i −0.536382 0.843975i \(-0.680209\pi\)
0.536382 0.843975i \(-0.319791\pi\)
\(194\) −1.33751e8 1.50839e9i −0.0944256 1.06490i
\(195\) 0 0
\(196\) 2.94577e8 5.26550e7i 0.199606 0.0356792i
\(197\) 1.86381e9i 1.23747i −0.785598 0.618737i \(-0.787644\pi\)
0.785598 0.618737i \(-0.212356\pi\)
\(198\) 1.74277e7 + 1.96543e8i 0.0113391 + 0.127878i
\(199\) 1.82005e9i 1.16057i −0.814413 0.580286i \(-0.802941\pi\)
0.814413 0.580286i \(-0.197059\pi\)
\(200\) 0 0
\(201\) 6.15349e7 0.0376997
\(202\) −1.04016e9 + 9.22320e7i −0.624732 + 0.0553957i
\(203\) −1.92035e9 −1.13083
\(204\) −8.75311e7 4.89690e8i −0.0505408 0.282749i
\(205\) 0 0
\(206\) −2.34280e9 + 2.07739e8i −1.30097 + 0.115359i
\(207\) −2.86599e8 −0.156097
\(208\) −9.38102e8 2.54025e9i −0.501183 1.35713i
\(209\) −6.00001e8 −0.314461
\(210\) 0 0
\(211\) 2.89129e9i 1.45869i −0.684148 0.729344i \(-0.739826\pi\)
0.684148 0.729344i \(-0.260174\pi\)
\(212\) −5.14880e8 2.88048e9i −0.254896 1.42601i
\(213\) 8.25613e8i 0.401105i
\(214\) 3.86370e9 3.42599e8i 1.84225 0.163355i
\(215\) 0 0
\(216\) −1.82047e9 + 4.94669e8i −0.836313 + 0.227248i
\(217\) 3.55125e8i 0.160156i
\(218\) 9.45866e8 8.38711e7i 0.418797 0.0371353i
\(219\) 1.00424e9i 0.436576i
\(220\) 0 0
\(221\) −2.00917e9 −0.842265
\(222\) 9.49739e7 + 1.07108e9i 0.0391014 + 0.440970i
\(223\) 2.26023e9 0.913973 0.456986 0.889474i \(-0.348929\pi\)
0.456986 + 0.889474i \(0.348929\pi\)
\(224\) −2.49552e9 + 1.18156e9i −0.991219 + 0.469313i
\(225\) 0 0
\(226\) −7.71886e7 8.70503e8i −0.0295882 0.333685i
\(227\) 1.08021e9 0.406823 0.203412 0.979093i \(-0.434797\pi\)
0.203412 + 0.979093i \(0.434797\pi\)
\(228\) −4.34759e8 2.43225e9i −0.160883 0.900053i
\(229\) −6.30352e8 −0.229214 −0.114607 0.993411i \(-0.536561\pi\)
−0.114607 + 0.993411i \(0.536561\pi\)
\(230\) 0 0
\(231\) 2.61421e8i 0.0918107i
\(232\) 2.88263e9 7.83286e8i 0.995032 0.270376i
\(233\) 1.17430e9i 0.398435i −0.979955 0.199217i \(-0.936160\pi\)
0.979955 0.199217i \(-0.0638400\pi\)
\(234\) 2.89863e8 + 3.26896e9i 0.0966784 + 1.09030i
\(235\) 0 0
\(236\) 9.59030e8 + 5.36526e9i 0.309161 + 1.72959i
\(237\) 7.80642e8i 0.247434i
\(238\) 1.80944e8 + 2.04062e9i 0.0563946 + 0.635996i
\(239\) 3.05182e9i 0.935334i 0.883905 + 0.467667i \(0.154905\pi\)
−0.883905 + 0.467667i \(0.845095\pi\)
\(240\) 0 0
\(241\) 2.81871e9 0.835570 0.417785 0.908546i \(-0.362807\pi\)
0.417785 + 0.908546i \(0.362807\pi\)
\(242\) 3.31797e9 2.94209e8i 0.967412 0.0857817i
\(243\) 3.58779e9 1.02897
\(244\) −6.64542e9 + 1.18786e9i −1.87484 + 0.335123i
\(245\) 0 0
\(246\) −4.85184e8 + 4.30218e7i −0.132485 + 0.0117476i
\(247\) −9.97938e9 −2.68112
\(248\) 1.44851e8 + 5.33076e8i 0.0382925 + 0.140923i
\(249\) 9.47414e8 0.246458
\(250\) 0 0
\(251\) 2.92571e8i 0.0737116i 0.999321 + 0.0368558i \(0.0117342\pi\)
−0.999321 + 0.0368558i \(0.988266\pi\)
\(252\) 3.29402e9 5.88800e8i 0.816816 0.146004i
\(253\) 1.43433e8i 0.0350079i
\(254\) 3.20500e9 2.84192e8i 0.770005 0.0682773i
\(255\) 0 0
\(256\) 3.26407e9 2.79152e9i 0.759976 0.649951i
\(257\) 3.03746e9i 0.696270i 0.937444 + 0.348135i \(0.113185\pi\)
−0.937444 + 0.348135i \(0.886815\pi\)
\(258\) −1.62004e9 + 1.43651e8i −0.365635 + 0.0324213i
\(259\) 4.42827e9i 0.984091i
\(260\) 0 0
\(261\) −3.62018e9 −0.780133
\(262\) 6.16669e8 + 6.95456e9i 0.130872 + 1.47593i
\(263\) 1.69827e9 0.354964 0.177482 0.984124i \(-0.443205\pi\)
0.177482 + 0.984124i \(0.443205\pi\)
\(264\) −1.06630e8 3.92418e8i −0.0219515 0.0807855i
\(265\) 0 0
\(266\) 8.98734e8 + 1.01356e10i 0.179517 + 2.02452i
\(267\) −1.54554e9 −0.304114
\(268\) 3.88044e8 6.93621e7i 0.0752215 0.0134457i
\(269\) 8.70547e8 0.166258 0.0831291 0.996539i \(-0.473509\pi\)
0.0831291 + 0.996539i \(0.473509\pi\)
\(270\) 0 0
\(271\) 7.36841e9i 1.36614i −0.730351 0.683072i \(-0.760643\pi\)
0.730351 0.683072i \(-0.239357\pi\)
\(272\) −1.10396e9 2.98936e9i −0.201686 0.546138i
\(273\) 4.34803e9i 0.782785i
\(274\) 6.33537e8 + 7.14478e9i 0.112401 + 1.26761i
\(275\) 0 0
\(276\) 5.81439e8 1.03931e8i 0.100200 0.0179105i
\(277\) 2.37339e9i 0.403135i 0.979475 + 0.201568i \(0.0646036\pi\)
−0.979475 + 0.201568i \(0.935396\pi\)
\(278\) 6.69684e8 + 7.55243e9i 0.112122 + 1.26447i
\(279\) 6.69469e8i 0.110488i
\(280\) 0 0
\(281\) 5.50733e9 0.883315 0.441657 0.897184i \(-0.354391\pi\)
0.441657 + 0.897184i \(0.354391\pi\)
\(282\) 3.60479e9 3.19641e8i 0.570011 0.0505436i
\(283\) −4.55904e9 −0.710768 −0.355384 0.934720i \(-0.615650\pi\)
−0.355384 + 0.934720i \(0.615650\pi\)
\(284\) 9.30629e8 + 5.20638e9i 0.143055 + 0.800317i
\(285\) 0 0
\(286\) −1.63600e9 + 1.45066e8i −0.244523 + 0.0216822i
\(287\) 2.00594e9 0.295659
\(288\) −4.70447e9 + 2.22743e9i −0.683818 + 0.323768i
\(289\) 4.61137e9 0.661056
\(290\) 0 0
\(291\) 3.78221e9i 0.527441i
\(292\) −1.13197e9 6.33280e9i −0.155706 0.871092i
\(293\) 8.27611e9i 1.12294i 0.827498 + 0.561469i \(0.189763\pi\)
−0.827498 + 0.561469i \(0.810237\pi\)
\(294\) 7.44490e8 6.60148e7i 0.0996482 0.00883593i
\(295\) 0 0
\(296\) 1.80623e9 + 6.64725e9i 0.235291 + 0.865914i
\(297\) 1.14419e9i 0.147053i
\(298\) 4.75740e9 4.21845e8i 0.603260 0.0534918i
\(299\) 2.38562e9i 0.298480i
\(300\) 0 0
\(301\) 6.69791e9 0.815969
\(302\) 1.02461e9 + 1.15552e10i 0.123178 + 1.38915i
\(303\) −2.60814e9 −0.309429
\(304\) −5.48324e9 1.48479e10i −0.642012 1.73848i
\(305\) 0 0
\(306\) 3.41110e8 + 3.84691e9i 0.0389053 + 0.438759i
\(307\) −7.73582e9 −0.870869 −0.435434 0.900221i \(-0.643405\pi\)
−0.435434 + 0.900221i \(0.643405\pi\)
\(308\) 2.94674e8 + 1.64854e9i 0.0327445 + 0.183188i
\(309\) −5.87446e9 −0.644368
\(310\) 0 0
\(311\) 1.08068e10i 1.15520i −0.816321 0.577599i \(-0.803990\pi\)
0.816321 0.577599i \(-0.196010\pi\)
\(312\) −1.77350e9 6.52680e9i −0.187160 0.688783i
\(313\) 4.73025e9i 0.492841i 0.969163 + 0.246421i \(0.0792544\pi\)
−0.969163 + 0.246421i \(0.920746\pi\)
\(314\) −9.47248e8 1.06827e10i −0.0974418 1.09891i
\(315\) 0 0
\(316\) −8.79938e8 4.92279e9i −0.0882478 0.493700i
\(317\) 5.44758e9i 0.539469i −0.962935 0.269735i \(-0.913064\pi\)
0.962935 0.269735i \(-0.0869360\pi\)
\(318\) −6.45518e8 7.27990e9i −0.0631248 0.711897i
\(319\) 1.81178e9i 0.174961i
\(320\) 0 0
\(321\) 9.68803e9 0.912463
\(322\) −2.42295e9 + 2.14846e8i −0.225383 + 0.0199850i
\(323\) −1.17437e10 −1.07893
\(324\) 3.56929e9 6.38003e8i 0.323893 0.0578952i
\(325\) 0 0
\(326\) 1.54711e10 1.37184e9i 1.36978 0.121460i
\(327\) 2.37171e9 0.207429
\(328\) −3.01111e9 + 8.18197e8i −0.260154 + 0.0706907i
\(329\) −1.49036e10 −1.27206
\(330\) 0 0
\(331\) 8.65354e8i 0.0720911i −0.999350 0.0360456i \(-0.988524\pi\)
0.999350 0.0360456i \(-0.0114761\pi\)
\(332\) 5.97446e9 1.06792e9i 0.491752 0.0878997i
\(333\) 8.34801e9i 0.678901i
\(334\) 1.27290e10 1.12870e9i 1.02284 0.0906966i
\(335\) 0 0
\(336\) −6.46924e9 + 2.38906e9i −0.507570 + 0.187443i
\(337\) 8.64475e8i 0.0670244i 0.999438 + 0.0335122i \(0.0106693\pi\)
−0.999438 + 0.0335122i \(0.989331\pi\)
\(338\) −1.42097e10 + 1.26000e9i −1.08873 + 0.0965389i
\(339\) 2.18274e9i 0.165274i
\(340\) 0 0
\(341\) 3.35046e8 0.0247792
\(342\) 1.69426e9 + 1.91072e10i 0.123844 + 1.39667i
\(343\) 1.21018e10 0.874329
\(344\) −1.00542e10 + 2.73199e9i −0.717982 + 0.195094i
\(345\) 0 0
\(346\) −8.48518e8 9.56926e9i −0.0592048 0.667689i
\(347\) 1.10077e10 0.759239 0.379620 0.925143i \(-0.376055\pi\)
0.379620 + 0.925143i \(0.376055\pi\)
\(348\) 7.34446e9 1.31281e9i 0.500775 0.0895125i
\(349\) 1.99631e10 1.34563 0.672816 0.739810i \(-0.265085\pi\)
0.672816 + 0.739810i \(0.265085\pi\)
\(350\) 0 0
\(351\) 1.90305e10i 1.25378i
\(352\) −1.11475e9 2.35442e9i −0.0726118 0.153361i
\(353\) 1.32468e10i 0.853126i −0.904458 0.426563i \(-0.859724\pi\)
0.904458 0.426563i \(-0.140276\pi\)
\(354\) 1.20236e9 + 1.35597e10i 0.0765634 + 0.863452i
\(355\) 0 0
\(356\) −9.74630e9 + 1.74213e9i −0.606792 + 0.108463i
\(357\) 5.11675e9i 0.315008i
\(358\) 1.63711e9 + 1.84627e10i 0.0996659 + 1.12399i
\(359\) 2.59685e9i 0.156340i −0.996940 0.0781699i \(-0.975092\pi\)
0.996940 0.0781699i \(-0.0249076\pi\)
\(360\) 0 0
\(361\) −4.13463e10 −2.43449
\(362\) −1.26941e10 + 1.12560e9i −0.739209 + 0.0655466i
\(363\) 8.31965e9 0.479158
\(364\) 4.90109e9 + 2.74190e10i 0.279182 + 1.56188i
\(365\) 0 0
\(366\) −1.67951e10 + 1.48924e9i −0.935963 + 0.0829930i
\(367\) −3.62330e9 −0.199728 −0.0998642 0.995001i \(-0.531841\pi\)
−0.0998642 + 0.995001i \(0.531841\pi\)
\(368\) 3.54945e9 1.31079e9i 0.193539 0.0714732i
\(369\) 3.78153e9 0.203968
\(370\) 0 0
\(371\) 3.00981e10i 1.58870i
\(372\) 2.42773e8 + 1.35819e9i 0.0126774 + 0.0709232i
\(373\) 4.15162e9i 0.214478i −0.994233 0.107239i \(-0.965799\pi\)
0.994233 0.107239i \(-0.0342009\pi\)
\(374\) −1.92524e9 + 1.70714e8i −0.0984009 + 0.00872533i
\(375\) 0 0
\(376\) 2.23718e10 6.07899e9i 1.11931 0.304145i
\(377\) 3.01339e10i 1.49173i
\(378\) 1.93284e10 1.71387e9i 0.946734 0.0839481i
\(379\) 1.89551e10i 0.918692i 0.888257 + 0.459346i \(0.151916\pi\)
−0.888257 + 0.459346i \(0.848084\pi\)
\(380\) 0 0
\(381\) 8.03638e9 0.381382
\(382\) −2.60374e9 2.93639e10i −0.122277 1.37899i
\(383\) 8.87673e9 0.412532 0.206266 0.978496i \(-0.433869\pi\)
0.206266 + 0.978496i \(0.433869\pi\)
\(384\) 8.73647e9 6.22491e9i 0.401801 0.286291i
\(385\) 0 0
\(386\) −3.30972e9 3.73257e10i −0.149088 1.68135i
\(387\) 1.26267e10 0.562918
\(388\) −4.26330e9 2.38509e10i −0.188113 1.05239i
\(389\) −2.05595e10 −0.897872 −0.448936 0.893564i \(-0.648197\pi\)
−0.448936 + 0.893564i \(0.648197\pi\)
\(390\) 0 0
\(391\) 2.80739e9i 0.120114i
\(392\) 4.62040e9 1.25548e9i 0.195675 0.0531699i
\(393\) 1.74382e10i 0.731023i
\(394\) −2.63393e9 2.97044e10i −0.109300 1.23264i
\(395\) 0 0
\(396\) 5.55508e8 + 3.10777e9i 0.0225897 + 0.126377i
\(397\) 2.04868e10i 0.824733i 0.911018 + 0.412366i \(0.135298\pi\)
−0.911018 + 0.412366i \(0.864702\pi\)
\(398\) −2.57209e9 2.90071e10i −0.102507 1.15604i
\(399\) 2.54144e10i 1.00274i
\(400\) 0 0
\(401\) −7.30576e9 −0.282545 −0.141273 0.989971i \(-0.545119\pi\)
−0.141273 + 0.989971i \(0.545119\pi\)
\(402\) 9.80711e8 8.69609e7i 0.0375523 0.00332981i
\(403\) 5.57258e9 0.211269
\(404\) −1.64471e10 + 2.93989e9i −0.617397 + 0.110358i
\(405\) 0 0
\(406\) −3.06056e10 + 2.71384e9i −1.12641 + 0.0998802i
\(407\) 4.17789e9 0.152258
\(408\) −2.08705e9 7.68073e9i −0.0753170 0.277180i
\(409\) 1.05889e10 0.378406 0.189203 0.981938i \(-0.439410\pi\)
0.189203 + 0.981938i \(0.439410\pi\)
\(410\) 0 0
\(411\) 1.79152e10i 0.627847i
\(412\) −3.70448e10 + 6.62168e9i −1.28570 + 0.229815i
\(413\) 5.60614e10i 1.92692i
\(414\) −4.56766e9 + 4.05021e8i −0.155487 + 0.0137872i
\(415\) 0 0
\(416\) −1.85408e10 3.91594e10i −0.619093 1.30756i
\(417\) 1.89373e10i 0.626289i
\(418\) −9.56250e9 + 8.47919e8i −0.313232 + 0.0277747i
\(419\) 2.61037e9i 0.0846928i 0.999103 + 0.0423464i \(0.0134833\pi\)
−0.999103 + 0.0423464i \(0.986517\pi\)
\(420\) 0 0
\(421\) 9.29505e9 0.295885 0.147943 0.988996i \(-0.452735\pi\)
0.147943 + 0.988996i \(0.452735\pi\)
\(422\) −4.08596e9 4.60799e10i −0.128838 1.45299i
\(423\) −2.80958e10 −0.877567
\(424\) −1.22766e10 4.51800e10i −0.379852 1.39792i
\(425\) 0 0
\(426\) 1.16675e9 + 1.31582e10i 0.0354275 + 0.399537i
\(427\) 6.94377e10 2.08874
\(428\) 6.10934e10 1.09203e10i 1.82062 0.325432i
\(429\) −4.10219e9 −0.121112
\(430\) 0 0
\(431\) 1.86560e10i 0.540642i 0.962770 + 0.270321i \(0.0871298\pi\)
−0.962770 + 0.270321i \(0.912870\pi\)
\(432\) −2.83146e10 + 1.04565e10i −0.812973 + 0.300227i
\(433\) 1.66970e10i 0.474994i 0.971388 + 0.237497i \(0.0763270\pi\)
−0.971388 + 0.237497i \(0.923673\pi\)
\(434\) −5.01861e8 5.65980e9i −0.0141457 0.159530i
\(435\) 0 0
\(436\) 1.49562e10 2.67339e9i 0.413880 0.0739802i
\(437\) 1.39440e10i 0.382351i
\(438\) −1.41918e9 1.60050e10i −0.0385605 0.434870i
\(439\) 5.48360e9i 0.147641i −0.997272 0.0738206i \(-0.976481\pi\)
0.997272 0.0738206i \(-0.0235192\pi\)
\(440\) 0 0
\(441\) −5.80257e9 −0.153414
\(442\) −3.20212e10 + 2.83936e9i −0.838973 + 0.0743928i
\(443\) 5.97812e9 0.155221 0.0776104 0.996984i \(-0.475271\pi\)
0.0776104 + 0.996984i \(0.475271\pi\)
\(444\) 3.02729e9 + 1.69361e10i 0.0778972 + 0.435793i
\(445\) 0 0
\(446\) 3.60223e10 3.19415e9i 0.910401 0.0807264i
\(447\) 1.19289e10 0.298794
\(448\) −3.81026e10 + 2.23577e10i −0.945893 + 0.555028i
\(449\) 3.11696e10 0.766913 0.383456 0.923559i \(-0.374734\pi\)
0.383456 + 0.923559i \(0.374734\pi\)
\(450\) 0 0
\(451\) 1.89253e9i 0.0457442i
\(452\) −2.46038e9 1.37645e10i −0.0589452 0.329767i
\(453\) 2.89740e10i 0.688043i
\(454\) 1.72158e10 1.52655e9i 0.405233 0.0359325i
\(455\) 0 0
\(456\) −1.03662e10 3.81494e10i −0.239751 0.882325i
\(457\) 4.33966e9i 0.0994927i −0.998762 0.0497463i \(-0.984159\pi\)
0.998762 0.0497463i \(-0.0158413\pi\)
\(458\) −1.00462e10 + 8.90810e8i −0.228318 + 0.0202453i
\(459\) 2.23951e10i 0.504547i
\(460\) 0 0
\(461\) −5.16164e10 −1.14284 −0.571418 0.820659i \(-0.693607\pi\)
−0.571418 + 0.820659i \(0.693607\pi\)
\(462\) 3.69440e8 + 4.16640e9i 0.00810915 + 0.0914519i
\(463\) −6.86820e10 −1.49458 −0.747289 0.664499i \(-0.768645\pi\)
−0.747289 + 0.664499i \(0.768645\pi\)
\(464\) 4.48349e10 1.65573e10i 0.967263 0.357205i
\(465\) 0 0
\(466\) −1.65952e9 1.87154e10i −0.0351916 0.396877i
\(467\) −2.14596e10 −0.451185 −0.225592 0.974222i \(-0.572432\pi\)
−0.225592 + 0.974222i \(0.572432\pi\)
\(468\) 9.23936e9 + 5.16893e10i 0.192601 + 1.07750i
\(469\) −4.05465e9 −0.0838036
\(470\) 0 0
\(471\) 2.67863e10i 0.544289i
\(472\) 2.28667e10 + 8.41534e10i 0.460718 + 1.69552i
\(473\) 6.31921e9i 0.126246i
\(474\) −1.10320e9 1.24415e10i −0.0218545 0.246466i
\(475\) 0 0
\(476\) 5.76759e9 + 3.22666e10i 0.112348 + 0.628530i
\(477\) 5.67397e10i 1.09601i
\(478\) 4.31281e9 + 4.86382e10i 0.0826131 + 0.931679i
\(479\) 8.24617e10i 1.56643i −0.621753 0.783213i \(-0.713579\pi\)
0.621753 0.783213i \(-0.286421\pi\)
\(480\) 0 0
\(481\) 6.94878e10 1.29816
\(482\) 4.49231e10 3.98339e9i 0.832304 0.0738014i
\(483\) −6.07543e9 −0.111632
\(484\) 5.24643e10 9.37789e9i 0.956055 0.170893i
\(485\) 0 0
\(486\) 5.71802e10 5.07024e9i 1.02495 0.0908832i
\(487\) −2.94674e9 −0.0523874 −0.0261937 0.999657i \(-0.508339\pi\)
−0.0261937 + 0.999657i \(0.508339\pi\)
\(488\) −1.04233e11 + 2.83227e10i −1.83791 + 0.499408i
\(489\) 3.87929e10 0.678448
\(490\) 0 0
\(491\) 8.17812e10i 1.40711i 0.710642 + 0.703554i \(0.248405\pi\)
−0.710642 + 0.703554i \(0.751595\pi\)
\(492\) −7.67180e9 + 1.37132e9i −0.130929 + 0.0234033i
\(493\) 3.54616e10i 0.600302i
\(494\) −1.59046e11 + 1.41028e10i −2.67064 + 0.236809i
\(495\) 0 0
\(496\) 3.06189e9 + 8.29118e9i 0.0505898 + 0.136990i
\(497\) 5.44012e10i 0.891626i
\(498\) 1.50994e10 1.33888e9i 0.245494 0.0217683i
\(499\) 4.69562e10i 0.757340i 0.925532 + 0.378670i \(0.123618\pi\)
−0.925532 + 0.378670i \(0.876382\pi\)
\(500\) 0 0
\(501\) 3.19173e10 0.506612
\(502\) 4.13460e8 + 4.66284e9i 0.00651056 + 0.0734236i
\(503\) 8.89245e10 1.38915 0.694575 0.719420i \(-0.255592\pi\)
0.694575 + 0.719420i \(0.255592\pi\)
\(504\) 5.16663e10 1.40391e10i 0.800728 0.217579i
\(505\) 0 0
\(506\) −2.02699e8 2.28596e9i −0.00309207 0.0348711i
\(507\) −3.56302e10 −0.539245
\(508\) 5.06780e10 9.05859e9i 0.760965 0.136021i
\(509\) −1.30873e11 −1.94975 −0.974877 0.222745i \(-0.928498\pi\)
−0.974877 + 0.222745i \(0.928498\pi\)
\(510\) 0 0
\(511\) 6.61711e10i 0.970476i
\(512\) 4.80761e10 4.91025e10i 0.699599 0.714535i
\(513\) 1.11234e11i 1.60609i
\(514\) 4.29252e9 + 4.84094e10i 0.0614978 + 0.693549i
\(515\) 0 0
\(516\) −2.56164e10 + 4.57888e9i −0.361343 + 0.0645892i
\(517\) 1.40610e10i 0.196813i
\(518\) −6.25801e9 7.05754e10i −0.0869195 0.980245i
\(519\) 2.39944e10i 0.330705i
\(520\) 0 0
\(521\) 7.03085e10 0.954238 0.477119 0.878839i \(-0.341681\pi\)
0.477119 + 0.878839i \(0.341681\pi\)
\(522\) −5.76966e10 + 5.11603e9i −0.777084 + 0.0689050i
\(523\) 7.40744e10 0.990060 0.495030 0.868876i \(-0.335157\pi\)
0.495030 + 0.868876i \(0.335157\pi\)
\(524\) 1.96563e10 + 1.09967e11i 0.260721 + 1.45860i
\(525\) 0 0
\(526\) 2.70661e10 2.39999e9i 0.353577 0.0313521i
\(527\) 6.55779e9 0.0850189
\(528\) −2.25398e9 6.10346e9i −0.0290011 0.0785309i
\(529\) −7.49776e10 −0.957434
\(530\) 0 0
\(531\) 1.05685e11i 1.32934i
\(532\) 2.86471e10 + 1.60265e11i 0.357630 + 2.00075i
\(533\) 3.14770e10i 0.390018i
\(534\) −2.46320e10 + 2.18415e9i −0.302925 + 0.0268607i
\(535\) 0 0
\(536\) 6.08642e9 1.65384e9i 0.0737399 0.0200370i
\(537\) 4.62943e10i 0.556712i
\(538\) 1.38743e10 1.23025e9i 0.165608 0.0146847i
\(539\) 2.90399e9i 0.0344064i
\(540\) 0 0
\(541\) 3.35458e9 0.0391605 0.0195803 0.999808i \(-0.493767\pi\)
0.0195803 + 0.999808i \(0.493767\pi\)
\(542\) −1.04130e10 1.17434e11i −0.120664 1.36081i
\(543\) −3.18298e10 −0.366129
\(544\) −2.18188e10 4.60827e10i −0.249135 0.526190i
\(545\) 0 0
\(546\) 6.14462e9 + 6.92966e10i 0.0691392 + 0.779725i
\(547\) −1.13812e11 −1.27128 −0.635638 0.771987i \(-0.719263\pi\)
−0.635638 + 0.771987i \(0.719263\pi\)
\(548\) 2.01939e10 + 1.12974e11i 0.223923 + 1.25273i
\(549\) 1.30902e11 1.44097
\(550\) 0 0
\(551\) 1.76134e11i 1.91090i
\(552\) 9.11979e9 2.47808e9i 0.0982265 0.0266907i
\(553\) 5.14380e10i 0.550026i
\(554\) 3.35407e9 + 3.78259e10i 0.0356068 + 0.401560i
\(555\) 0 0
\(556\) 2.13461e10 + 1.19420e11i 0.223367 + 1.24962i
\(557\) 1.05403e11i 1.09505i −0.836790 0.547524i \(-0.815570\pi\)
0.836790 0.547524i \(-0.184430\pi\)
\(558\) −9.46091e8 1.06696e10i −0.00975879 0.110056i
\(559\) 1.05103e11i 1.07638i
\(560\) 0 0
\(561\) −4.82745e9 −0.0487378
\(562\) 8.77728e10 7.78293e9i 0.879862 0.0780185i
\(563\) −7.97945e10 −0.794217 −0.397108 0.917772i \(-0.629986\pi\)
−0.397108 + 0.917772i \(0.629986\pi\)
\(564\) 5.69995e10 1.01885e10i 0.563319 0.100692i
\(565\) 0 0
\(566\) −7.26596e10 + 6.44282e9i −0.707990 + 0.0627784i
\(567\) −3.72953e10 −0.360846
\(568\) 2.21895e10 + 8.16613e10i 0.213184 + 0.784554i
\(569\) 4.57243e10 0.436212 0.218106 0.975925i \(-0.430012\pi\)
0.218106 + 0.975925i \(0.430012\pi\)
\(570\) 0 0
\(571\) 2.16780e10i 0.203927i −0.994788 0.101964i \(-0.967487\pi\)
0.994788 0.101964i \(-0.0325126\pi\)
\(572\) −2.58687e10 + 4.62398e9i −0.241652 + 0.0431948i
\(573\) 7.36286e10i 0.683011i
\(574\) 3.19697e10 2.83479e9i 0.294504 0.0261140i
\(575\) 0 0
\(576\) −7.18296e10 + 4.21479e10i −0.652549 + 0.382901i
\(577\) 1.69273e11i 1.52716i 0.645715 + 0.763579i \(0.276560\pi\)
−0.645715 + 0.763579i \(0.723440\pi\)
\(578\) 7.34935e10 6.51676e9i 0.658472 0.0583876i
\(579\) 9.35923e10i 0.832772i
\(580\) 0 0
\(581\) −6.24269e10 −0.547857
\(582\) −5.34500e9 6.02789e10i −0.0465861 0.525380i
\(583\) −2.83963e10 −0.245803
\(584\) −2.69903e10 9.93290e10i −0.232036 0.853935i
\(585\) 0 0
\(586\) 1.16958e10 + 1.31900e11i 0.0991831 + 1.11855i
\(587\) −3.75401e10 −0.316187 −0.158093 0.987424i \(-0.550535\pi\)
−0.158093 + 0.987424i \(0.550535\pi\)
\(588\) 1.17720e10 2.10422e9i 0.0984783 0.0176028i
\(589\) 3.25719e10 0.270634
\(590\) 0 0
\(591\) 7.44822e10i 0.610524i
\(592\) 3.81806e10 + 1.03388e11i 0.310854 + 0.841748i
\(593\) 1.04118e11i 0.841994i −0.907062 0.420997i \(-0.861680\pi\)
0.907062 0.420997i \(-0.138320\pi\)
\(594\) 1.61697e9 + 1.82355e10i 0.0129884 + 0.146478i
\(595\) 0 0
\(596\) 7.52248e10 1.34463e10i 0.596178 0.106566i
\(597\) 7.27337e10i 0.572583i
\(598\) −3.37134e9 3.80207e10i −0.0263632 0.297314i
\(599\) 4.81442e10i 0.373970i −0.982363 0.186985i \(-0.940128\pi\)
0.982363 0.186985i \(-0.0598716\pi\)
\(600\) 0 0
\(601\) −1.48443e11 −1.13779 −0.568896 0.822410i \(-0.692629\pi\)
−0.568896 + 0.822410i \(0.692629\pi\)
\(602\) 1.06748e11 9.46546e9i 0.812780 0.0720702i
\(603\) −7.64369e9 −0.0578141
\(604\) 3.26594e10 + 1.82712e11i 0.245392 + 1.37284i
\(605\) 0 0
\(606\) −4.15672e10 + 3.68581e9i −0.308219 + 0.0273302i
\(607\) 5.44460e10 0.401062 0.200531 0.979687i \(-0.435733\pi\)
0.200531 + 0.979687i \(0.435733\pi\)
\(608\) −1.08372e11 2.28888e11i −0.793054 1.67498i
\(609\) −7.67419e10 −0.557909
\(610\) 0 0
\(611\) 2.33866e11i 1.67804i
\(612\) 1.08729e10 + 6.08279e10i 0.0775065 + 0.433608i
\(613\) 1.16278e11i 0.823484i −0.911301 0.411742i \(-0.864921\pi\)
0.911301 0.411742i \(-0.135079\pi\)
\(614\) −1.23289e11 + 1.09322e10i −0.867465 + 0.0769192i
\(615\) 0 0
\(616\) 7.02607e9 + 2.58572e10i 0.0487966 + 0.179580i
\(617\) 4.87411e10i 0.336321i −0.985760 0.168161i \(-0.946217\pi\)
0.985760 0.168161i \(-0.0537828\pi\)
\(618\) −9.36240e10 + 8.30176e9i −0.641850 + 0.0569136i
\(619\) 4.92280e10i 0.335312i −0.985846 0.167656i \(-0.946380\pi\)
0.985846 0.167656i \(-0.0536198\pi\)
\(620\) 0 0
\(621\) −2.65910e10 −0.178800
\(622\) −1.52721e10 1.72233e11i −0.102033 1.15068i
\(623\) 1.01839e11 0.676022
\(624\) −3.74888e10 1.01514e11i −0.247265 0.669560i
\(625\) 0 0
\(626\) 6.68477e9 + 7.53882e10i 0.0435300 + 0.490915i
\(627\) −2.39775e10 −0.155143
\(628\) −3.01935e10 1.68916e11i −0.194122 1.08601i
\(629\) 8.17731e10 0.522406
\(630\) 0 0
\(631\) 1.10376e11i 0.696240i 0.937450 + 0.348120i \(0.113180\pi\)
−0.937450 + 0.348120i \(0.886820\pi\)
\(632\) −2.09808e10 7.72132e10i −0.131509 0.483976i
\(633\) 1.15543e11i 0.719662i
\(634\) −7.69850e9 8.68207e10i −0.0476485 0.537361i
\(635\) 0 0
\(636\) −2.05758e10 1.15111e11i −0.125756 0.703539i
\(637\) 4.82999e10i 0.293352i
\(638\) −2.56039e9 2.88751e10i −0.0154534 0.174277i
\(639\) 1.02555e11i 0.615112i
\(640\) 0 0
\(641\) 2.15342e11 1.27554 0.637772 0.770225i \(-0.279856\pi\)
0.637772 + 0.770225i \(0.279856\pi\)
\(642\) 1.54403e11 1.36911e10i 0.908897 0.0805930i
\(643\) 1.22051e11 0.713996 0.356998 0.934105i \(-0.383800\pi\)
0.356998 + 0.934105i \(0.383800\pi\)
\(644\) −3.83121e10 + 6.84821e9i −0.222737 + 0.0398138i
\(645\) 0 0
\(646\) −1.87165e11 + 1.65962e10i −1.07472 + 0.0952966i
\(647\) −2.92452e11 −1.66893 −0.834463 0.551064i \(-0.814222\pi\)
−0.834463 + 0.551064i \(0.814222\pi\)
\(648\) 5.59838e10 1.52122e10i 0.317514 0.0862767i
\(649\) 5.28916e10 0.298132
\(650\) 0 0
\(651\) 1.41916e10i 0.0790149i
\(652\) 2.44631e11 4.37272e10i 1.35369 0.241970i
\(653\) 2.80990e10i 0.154539i 0.997010 + 0.0772696i \(0.0246202\pi\)
−0.997010 + 0.0772696i \(0.975380\pi\)
\(654\) 3.77990e10 3.35169e9i 0.206619 0.0183211i
\(655\) 0 0
\(656\) −4.68332e10 + 1.72953e10i −0.252894 + 0.0933925i
\(657\) 1.24743e11i 0.669509i
\(658\) −2.37526e11 + 2.10618e10i −1.26709 + 0.112355i
\(659\) 2.51394e11i 1.33295i −0.745529 0.666473i \(-0.767803\pi\)
0.745529 0.666473i \(-0.232197\pi\)
\(660\) 0 0
\(661\) −2.53415e11 −1.32748 −0.663738 0.747965i \(-0.731031\pi\)
−0.663738 + 0.747965i \(0.731031\pi\)
\(662\) −1.22291e9 1.37915e10i −0.00636743 0.0718094i
\(663\) −8.02914e10 −0.415542
\(664\) 9.37086e10 2.54631e10i 0.482067 0.130990i
\(665\) 0 0
\(666\) −1.17974e10 1.33046e11i −0.0599637 0.676247i
\(667\) 4.21056e10 0.212734
\(668\) 2.01273e11 3.59771e10i 1.01083 0.180684i
\(669\) 9.03242e10 0.450920
\(670\) 0 0
\(671\) 6.55116e10i 0.323168i
\(672\) −9.97271e10 + 4.72178e10i −0.489031 + 0.231542i
\(673\) 1.77857e11i 0.866981i 0.901158 + 0.433491i \(0.142718\pi\)
−0.901158 + 0.433491i \(0.857282\pi\)
\(674\) 1.22167e9 + 1.37775e10i 0.00591991 + 0.0667624i
\(675\) 0 0
\(676\) −2.24687e11 + 4.01623e10i −1.07595 + 0.192323i
\(677\) 2.43910e11i 1.16111i −0.814220 0.580556i \(-0.802835\pi\)
0.814220 0.580556i \(-0.197165\pi\)
\(678\) −3.08464e9 3.47874e10i −0.0145977 0.164628i
\(679\) 2.49217e11i 1.17246i
\(680\) 0 0
\(681\) 4.31678e10 0.200711
\(682\) 5.33978e9 4.73485e8i 0.0246823 0.00218861i
\(683\) −2.74209e11 −1.26008 −0.630041 0.776562i \(-0.716962\pi\)
−0.630041 + 0.776562i \(0.716962\pi\)
\(684\) 5.40045e10 + 3.02126e11i 0.246720 + 1.38027i
\(685\) 0 0
\(686\) 1.92873e11 1.71023e10i 0.870912 0.0772249i
\(687\) −2.51904e10 −0.113086
\(688\) −1.56378e11 + 5.77495e10i −0.697944 + 0.257747i
\(689\) −4.72295e11 −2.09573
\(690\) 0 0
\(691\) 1.07912e11i 0.473323i −0.971592 0.236661i \(-0.923947\pi\)
0.971592 0.236661i \(-0.0760532\pi\)
\(692\) −2.70465e10 1.51311e11i −0.117947 0.659850i
\(693\) 3.24730e10i 0.140796i
\(694\) 1.75435e11 1.55560e10i 0.756272 0.0670596i
\(695\) 0 0
\(696\) 1.15197e11 3.13020e10i 0.490912 0.133394i
\(697\) 3.70421e10i 0.156951i
\(698\) 3.18161e11 2.82118e10i 1.34037 0.118853i
\(699\) 4.69280e10i 0.196573i
\(700\) 0 0
\(701\) −1.00364e11 −0.415630 −0.207815 0.978168i \(-0.566635\pi\)
−0.207815 + 0.978168i \(0.566635\pi\)
\(702\) 2.68938e10 + 3.03298e11i 0.110740 + 1.24888i
\(703\) 4.06159e11 1.66293
\(704\) −2.10936e10 3.59482e10i −0.0858735 0.146348i
\(705\) 0 0
\(706\) −1.87204e10 2.11121e11i −0.0753521 0.849791i
\(707\) 1.71855e11 0.687837
\(708\) 3.83251e10 + 2.14409e11i 0.152528 + 0.853315i
\(709\) 4.36108e11 1.72587 0.862937 0.505311i \(-0.168622\pi\)
0.862937 + 0.505311i \(0.168622\pi\)
\(710\) 0 0
\(711\) 9.69690e10i 0.379450i
\(712\) −1.52869e11 + 4.15386e10i −0.594841 + 0.161634i
\(713\) 7.78647e9i 0.0301288i
\(714\) 7.23097e9 + 8.15481e10i 0.0278230 + 0.313777i
\(715\) 0 0
\(716\) 5.21829e10 + 2.91936e11i 0.198553 + 1.11080i
\(717\) 1.21958e11i 0.461459i
\(718\) −3.66986e9 4.13872e10i −0.0138087 0.155729i
\(719\) 3.29910e11i 1.23447i 0.786780 + 0.617234i \(0.211747\pi\)
−0.786780 + 0.617234i \(0.788253\pi\)
\(720\) 0 0
\(721\) 3.87079e11 1.43238
\(722\) −6.58956e11 + 5.84304e10i −2.42498 + 0.215026i
\(723\) 1.12642e11 0.412239
\(724\) −2.00721e11 + 3.58784e10i −0.730531 + 0.130581i
\(725\) 0 0
\(726\) 1.32594e11 1.17573e10i 0.477285 0.0423215i
\(727\) 2.87638e11 1.02969 0.514847 0.857282i \(-0.327849\pi\)
0.514847 + 0.857282i \(0.327849\pi\)
\(728\) 1.16859e11 + 4.30064e11i 0.416043 + 1.53111i
\(729\) 5.04496e10 0.178627
\(730\) 0 0
\(731\) 1.23685e11i 0.433158i
\(732\) −2.65567e11 + 4.74695e10i −0.924974 + 0.165337i
\(733\) 7.34639e10i 0.254483i −0.991872 0.127241i \(-0.959388\pi\)
0.991872 0.127241i \(-0.0406123\pi\)
\(734\) −5.77462e10 + 5.12043e9i −0.198948 + 0.0176410i
\(735\) 0 0
\(736\) 5.47168e10 2.59068e10i 0.186470 0.0882881i
\(737\) 3.82540e9i 0.0129660i
\(738\) 6.02681e10 5.34405e9i 0.203171 0.0180154i
\(739\) 3.53166e11i 1.18413i 0.805889 + 0.592067i \(0.201688\pi\)
−0.805889 + 0.592067i \(0.798312\pi\)
\(740\) 0 0
\(741\) −3.98800e11 −1.32276
\(742\) 4.25344e10 + 4.79687e11i 0.140322 + 1.58249i
\(743\) −2.51184e11 −0.824208 −0.412104 0.911137i \(-0.635206\pi\)
−0.412104 + 0.911137i \(0.635206\pi\)
\(744\) 5.78858e9 + 2.13030e10i 0.0188921 + 0.0695263i
\(745\) 0 0
\(746\) −5.86705e9 6.61663e10i −0.0189437 0.213639i
\(747\) −1.17685e11 −0.377954
\(748\) −3.04422e10 + 5.44149e9i −0.0972456 + 0.0173825i
\(749\) −6.38363e11 −2.02834
\(750\) 0 0
\(751\) 5.06685e11i 1.59286i 0.604729 + 0.796431i \(0.293281\pi\)
−0.604729 + 0.796431i \(0.706719\pi\)
\(752\) 3.47958e11 1.28499e11i 1.08807 0.401818i
\(753\) 1.16918e10i 0.0363666i
\(754\) −4.25852e10 4.80259e11i −0.131757 1.48590i
\(755\) 0 0
\(756\) 3.05623e11 5.46295e10i 0.935620 0.167240i
\(757\) 9.66712e10i 0.294384i 0.989108 + 0.147192i \(0.0470235\pi\)
−0.989108 + 0.147192i \(0.952977\pi\)
\(758\) 2.67873e10 + 3.02097e11i 0.0811432 + 0.915102i
\(759\) 5.73192e9i 0.0172716i
\(760\) 0 0
\(761\) 5.18752e11 1.54675 0.773376 0.633947i \(-0.218566\pi\)
0.773376 + 0.633947i \(0.218566\pi\)
\(762\) 1.28079e11 1.13570e10i 0.379892 0.0336855i
\(763\) −1.56276e11 −0.461100
\(764\) −8.29940e10 4.64307e11i −0.243598 1.36280i
\(765\) 0 0
\(766\) 1.41473e11 1.25446e10i 0.410920 0.0364368i
\(767\) 8.79708e11 2.54189
\(768\) 1.30440e11 1.11556e11i 0.374944 0.320661i
\(769\) −1.06291e11 −0.303943 −0.151972 0.988385i \(-0.548562\pi\)
−0.151972 + 0.988385i \(0.548562\pi\)
\(770\) 0 0
\(771\) 1.21384e11i 0.343514i
\(772\) −1.05497e11 5.90200e11i −0.297010 1.66161i
\(773\) 9.89630e10i 0.277176i 0.990350 + 0.138588i \(0.0442563\pi\)
−0.990350 + 0.138588i \(0.955744\pi\)
\(774\) 2.01237e11 1.78439e10i 0.560717 0.0497195i
\(775\) 0 0
\(776\) −1.01652e11 3.74098e11i −0.280330 1.03167i
\(777\) 1.76964e11i 0.485514i
\(778\) −3.27666e11 + 2.90546e10i −0.894363 + 0.0793043i
\(779\) 1.83984e11i 0.499610i
\(780\) 0 0
\(781\) 5.13253e10 0.137952
\(782\) −3.96738e9 4.47426e10i −0.0106091 0.119645i
\(783\) −3.35885e11 −0.893601
\(784\) 7.18632e10 2.65387e10i 0.190214 0.0702451i
\(785\) 0 0
\(786\) 2.46436e10 + 2.77921e11i 0.0645674 + 0.728166i
\(787\) −3.29755e11 −0.859592 −0.429796 0.902926i \(-0.641415\pi\)
−0.429796 + 0.902926i \(0.641415\pi\)
\(788\) −8.39562e10 4.69690e11i −0.217745 1.21817i
\(789\) 6.78670e10 0.175126
\(790\) 0 0
\(791\) 1.43825e11i 0.367391i
\(792\) 1.32453e10 + 4.87450e10i 0.0336636 + 0.123888i
\(793\) 1.08961e12i 2.75535i
\(794\) 2.89519e10 + 3.26509e11i 0.0728443 + 0.821509i
\(795\) 0 0
\(796\) −8.19853e10 4.58664e11i −0.204213 1.14246i
\(797\) 6.85369e10i 0.169860i 0.996387 + 0.0849300i \(0.0270667\pi\)
−0.996387 + 0.0849300i \(0.972933\pi\)
\(798\) 3.59156e10 + 4.05042e11i 0.0885668 + 0.998822i
\(799\) 2.75213e11i 0.675277i
\(800\) 0 0
\(801\) 1.91983e11 0.466371
\(802\) −1.16435e11 + 1.03245e10i −0.281441 + 0.0249557i
\(803\) −6.24297e10 −0.150151
\(804\) 1.55072e10 2.77187e9i 0.0371115 0.00663360i
\(805\) 0 0
\(806\) 8.88128e10 7.87514e9i 0.210443 0.0186603i
\(807\) 3.47891e10 0.0820256
\(808\) −2.57971e11 + 7.00974e10i −0.605237 + 0.164459i
\(809\) 7.62508e11 1.78012 0.890062 0.455840i \(-0.150661\pi\)
0.890062 + 0.455840i \(0.150661\pi\)
\(810\) 0 0
\(811\) 4.40805e11i 1.01897i 0.860478 + 0.509487i \(0.170165\pi\)
−0.860478 + 0.509487i \(0.829835\pi\)
\(812\) −4.83940e11 + 8.65034e10i −1.11319 + 0.198980i
\(813\) 2.94459e11i 0.674005i
\(814\) 6.65850e10 5.90418e9i 0.151663 0.0134481i
\(815\) 0 0
\(816\) −4.41167e10 1.19462e11i −0.0995044 0.269444i
\(817\) 6.14330e11i 1.37884i
\(818\) 1.68761e11 1.49642e10i 0.376927 0.0334226i
\(819\) 5.40100e11i 1.20043i
\(820\) 0 0
\(821\) −2.67657e11 −0.589123 −0.294562 0.955632i \(-0.595174\pi\)
−0.294562 + 0.955632i \(0.595174\pi\)
\(822\) 2.53176e10 + 2.85522e11i 0.0554544 + 0.625393i
\(823\) 3.84869e11 0.838906 0.419453 0.907777i \(-0.362222\pi\)
0.419453 + 0.907777i \(0.362222\pi\)
\(824\) −5.81042e11 + 1.57884e11i −1.26037 + 0.342476i
\(825\) 0 0
\(826\) −7.92257e10 8.93477e11i −0.170195 1.91939i
\(827\) 4.88174e11 1.04364 0.521822 0.853054i \(-0.325253\pi\)
0.521822 + 0.853054i \(0.325253\pi\)
\(828\) −7.22246e10 + 1.29100e10i −0.153661 + 0.0274666i
\(829\) 1.47134e11 0.311526 0.155763 0.987794i \(-0.450216\pi\)
0.155763 + 0.987794i \(0.450216\pi\)
\(830\) 0 0
\(831\) 9.48464e10i 0.198892i
\(832\) −3.50834e11 5.97900e11i −0.732164 1.24777i
\(833\) 5.68392e10i 0.118050i
\(834\) 2.67622e10 + 3.01813e11i 0.0553168 + 0.623841i
\(835\) 0 0
\(836\) −1.51204e11 + 2.70273e10i −0.309555 + 0.0553323i
\(837\) 6.21142e10i 0.126558i
\(838\) 3.68896e9 + 4.16027e10i 0.00748046 + 0.0843617i
\(839\) 4.39919e11i 0.887821i −0.896071 0.443910i \(-0.853591\pi\)
0.896071 0.443910i \(-0.146409\pi\)
\(840\) 0 0
\(841\) 3.16120e10 0.0631929
\(842\) 1.48140e11 1.31357e10i 0.294729 0.0261340i
\(843\) 2.20086e11 0.435794
\(844\) −1.30240e11 7.28622e11i −0.256669 1.43593i
\(845\) 0 0
\(846\) −4.47776e11 + 3.97049e10i −0.874137 + 0.0775108i
\(847\) −5.48198e11 −1.06513
\(848\) −2.59506e11 7.02705e11i −0.501838 1.35891i
\(849\) −1.82190e11 −0.350666
\(850\) 0 0
\(851\) 9.70941e10i 0.185129i
\(852\) 3.71901e10 + 2.08059e11i 0.0705780 + 0.394847i
\(853\) 6.98819e11i 1.31998i −0.751273 0.659992i \(-0.770560\pi\)
0.751273 0.659992i \(-0.229440\pi\)
\(854\) 1.10666e12 9.81291e10i 2.08058 0.184487i
\(855\) 0 0
\(856\) 9.58242e11 2.60379e11i 1.78476 0.484966i
\(857\) 3.28226e10i 0.0608485i 0.999537 + 0.0304242i \(0.00968583\pi\)
−0.999537 + 0.0304242i \(0.990314\pi\)
\(858\) −6.53785e10 + 5.79719e9i −0.120638 + 0.0106972i
\(859\) 6.28697e11i 1.15470i 0.816497 + 0.577349i \(0.195913\pi\)
−0.816497 + 0.577349i \(0.804087\pi\)
\(860\) 0 0
\(861\) 8.01623e10 0.145867
\(862\) 2.63646e10 + 2.97330e11i 0.0477521 + 0.538529i
\(863\) −7.90308e11 −1.42480 −0.712399 0.701775i \(-0.752391\pi\)
−0.712399 + 0.701775i \(0.752391\pi\)
\(864\) −4.36487e11 + 2.06664e11i −0.783278 + 0.370859i
\(865\) 0 0
\(866\) 2.35962e10 + 2.66109e11i 0.0419537 + 0.473138i
\(867\) 1.84281e11 0.326140
\(868\) −1.59968e10 8.94936e10i −0.0281809 0.157657i
\(869\) −4.85296e10 −0.0850997
\(870\) 0 0
\(871\) 6.36251e10i 0.110549i
\(872\) 2.34586e11 6.37430e10i 0.405728 0.110247i
\(873\) 4.69815e11i 0.808854i
\(874\) −1.97056e10 2.22232e11i −0.0337710 0.380857i
\(875\) 0 0
\(876\) −4.52364e10 2.53074e11i −0.0768195 0.429764i
\(877\) 7.21024e10i 0.121885i 0.998141 + 0.0609427i \(0.0194107\pi\)
−0.998141 + 0.0609427i \(0.980589\pi\)
\(878\) −7.74940e9 8.73947e10i −0.0130404 0.147064i
\(879\) 3.30733e11i 0.554015i
\(880\) 0 0
\(881\) −5.33265e11 −0.885196 −0.442598 0.896720i \(-0.645943\pi\)
−0.442598 + 0.896720i \(0.645943\pi\)
\(882\) −9.24783e10 + 8.20017e9i −0.152815 + 0.0135503i
\(883\) 3.49301e11 0.574589 0.287295 0.957842i \(-0.407244\pi\)
0.287295 + 0.957842i \(0.407244\pi\)
\(884\) −5.06324e11 + 9.05043e10i −0.829123 + 0.148204i
\(885\) 0 0
\(886\) 9.52761e10 8.44825e9i 0.154614 0.0137098i
\(887\) −2.17981e11 −0.352148 −0.176074 0.984377i \(-0.556340\pi\)
−0.176074 + 0.984377i \(0.556340\pi\)
\(888\) 7.21812e10 + 2.65640e11i 0.116084 + 0.427210i
\(889\) −5.29532e11 −0.847784
\(890\) 0 0
\(891\) 3.51866e10i 0.0558299i
\(892\) 5.69591e11 1.01813e11i 0.899712 0.160822i
\(893\) 1.36696e12i 2.14956i
\(894\) 1.90117e11 1.68579e10i 0.297626 0.0263909i
\(895\) 0 0
\(896\) −5.75663e11 + 4.10171e11i −0.893174 + 0.636405i
\(897\) 9.53348e10i 0.147259i
\(898\) 4.96765e11 4.40488e10i 0.763916 0.0677374i
\(899\) 9.83549e10i 0.150577i
\(900\) 0 0
\(901\) −5.55795e11 −0.843365
\(902\) 2.67451e9 + 3.01621e10i 0.00404034 + 0.0455654i
\(903\) 2.67665e11 0.402569
\(904\) −5.86642e10 2.15895e11i −0.0878414 0.323272i
\(905\) 0 0
\(906\) 4.09459e10 + 4.61772e11i 0.0607712 + 0.685354i
\(907\) −6.26742e9 −0.00926104 −0.00463052 0.999989i \(-0.501474\pi\)
−0.00463052 + 0.999989i \(0.501474\pi\)
\(908\) 2.72220e11 4.86587e10i 0.400476 0.0715842i
\(909\) 3.23975e11 0.474522
\(910\) 0 0
\(911\) 6.22008e11i 0.903073i −0.892253 0.451536i \(-0.850876\pi\)
0.892253 0.451536i \(-0.149124\pi\)
\(912\) −2.19123e11 5.93356e11i −0.316745 0.857701i
\(913\) 5.88972e10i 0.0847640i
\(914\) −6.13279e9 6.91632e10i −0.00878766 0.0991038i
\(915\) 0 0
\(916\) −1.58852e11 + 2.83945e10i −0.225638 + 0.0403323i
\(917\) 1.14904e12i 1.62501i
\(918\) 3.16486e10 + 3.56921e11i 0.0445640 + 0.502575i
\(919\) 8.27760e11i 1.16049i 0.814441 + 0.580246i \(0.197044\pi\)
−0.814441 + 0.580246i \(0.802956\pi\)
\(920\) 0 0
\(921\) −3.09142e11 −0.429654
\(922\) −8.22635e11 + 7.29441e10i −1.13837 + 0.100941i
\(923\) 8.53656e11 1.17619
\(924\) 1.17759e10 + 6.58797e10i 0.0161549 + 0.0903782i
\(925\) 0 0
\(926\) −1.09462e12 + 9.70610e10i −1.48874 + 0.132008i
\(927\) 7.29708e11 0.988167
\(928\) 6.91156e11 3.27242e11i 0.931932 0.441243i
\(929\) 6.50031e11 0.872713 0.436356 0.899774i \(-0.356269\pi\)
0.436356 + 0.899774i \(0.356269\pi\)
\(930\) 0 0
\(931\) 2.82315e11i 0.375781i
\(932\) −5.28971e10 2.95931e11i −0.0701082 0.392218i
\(933\) 4.31866e11i 0.569932i
\(934\) −3.42012e11 + 3.03266e10i −0.449421 + 0.0398508i
\(935\) 0 0
\(936\) 2.20299e11 + 8.10740e11i 0.287018 + 1.05628i
\(937\) 6.60322e11i 0.856639i −0.903627 0.428319i \(-0.859106\pi\)
0.903627 0.428319i \(-0.140894\pi\)
\(938\) −6.46209e10 + 5.73002e9i −0.0834760 + 0.00740193i
\(939\) 1.89032e11i 0.243149i
\(940\) 0 0
\(941\) −2.13315e11 −0.272059 −0.136029 0.990705i \(-0.543434\pi\)
−0.136029 + 0.990705i \(0.543434\pi\)
\(942\) −3.78543e10 4.26906e11i −0.0480741 0.542161i
\(943\) −4.39823e10 −0.0556200
\(944\) 4.83362e11 + 1.30888e12i 0.608674 + 1.64820i
\(945\) 0 0
\(946\) 8.93027e9 + 1.00712e11i 0.0111506 + 0.125753i
\(947\) 1.23955e10 0.0154121 0.00770607 0.999970i \(-0.497547\pi\)
0.00770607 + 0.999970i \(0.497547\pi\)
\(948\) −3.51644e10 1.96726e11i −0.0435382 0.243573i
\(949\) −1.03835e12 −1.28020
\(950\) 0 0
\(951\) 2.17698e11i 0.266154i
\(952\) 1.37520e11 + 5.06098e11i 0.167424 + 0.616150i
\(953\) 1.59801e12i 1.93734i 0.248344 + 0.968672i \(0.420114\pi\)
−0.248344 + 0.968672i \(0.579886\pi\)
\(954\) 8.01843e10 + 9.04288e11i 0.0968046 + 1.09172i
\(955\) 0 0
\(956\) 1.37471e11 + 7.69076e11i 0.164581 + 0.920741i
\(957\) 7.24029e10i 0.0863193i
\(958\) −1.16534e11 1.31423e12i −0.138354 1.56030i
\(959\) 1.18046e12i 1.39566i
\(960\) 0 0
\(961\) 8.34703e11 0.978674
\(962\) 1.10746e12 9.81999e10i 1.29309 0.114660i
\(963\) −1.20342e12 −1.39930
\(964\) 7.10332e11 1.26970e11i 0.822533 0.147026i
\(965\) 0 0
\(966\) −9.68270e10 + 8.58577e9i −0.111196 + 0.00985986i
\(967\) −4.54304e11 −0.519566 −0.259783 0.965667i \(-0.583651\pi\)
−0.259783 + 0.965667i \(0.583651\pi\)
\(968\) 8.22896e11 2.23602e11i 0.937224 0.254668i
\(969\) −4.69307e11 −0.532306
\(970\) 0 0
\(971\) 3.98175e11i 0.447917i −0.974599 0.223958i \(-0.928102\pi\)
0.974599 0.223958i \(-0.0718979\pi\)
\(972\) 9.04143e11 1.61614e11i 1.01291 0.181056i
\(973\) 1.24782e12i 1.39219i
\(974\) −4.69636e10 + 4.16432e9i −0.0521826 + 0.00462710i
\(975\) 0 0
\(976\) −1.62118e12 + 5.98693e11i −1.78662 + 0.659789i
\(977\) 1.61846e12i 1.77633i 0.459525 + 0.888165i \(0.348020\pi\)
−0.459525 + 0.888165i \(0.651980\pi\)
\(978\) 6.18260e11 5.48219e10i 0.675796 0.0599237i
\(979\) 9.60806e10i 0.104594i
\(980\) 0 0
\(981\) −2.94607e11 −0.318102
\(982\) 1.15573e11 + 1.30339e12i 0.124282 + 1.40161i
\(983\) 7.83368e10 0.0838980 0.0419490 0.999120i \(-0.486643\pi\)
0.0419490 + 0.999120i \(0.486643\pi\)
\(984\) −1.20331e11 + 3.26971e10i −0.128351 + 0.0348762i
\(985\) 0 0
\(986\) −5.01141e10 5.65167e11i −0.0530215 0.597956i
\(987\) −5.95585e11 −0.627589
\(988\) −2.51486e12 + 4.49526e11i −2.63929 + 0.471767i
\(989\) −1.46858e11 −0.153502
\(990\) 0 0
\(991\) 1.11925e12i 1.16046i −0.814451 0.580232i \(-0.802962\pi\)
0.814451 0.580232i \(-0.197038\pi\)
\(992\) 6.05159e10 + 1.27813e11i 0.0624917 + 0.131987i
\(993\) 3.45816e10i 0.0355671i
\(994\) −7.68795e10 8.67017e11i −0.0787526 0.888142i
\(995\) 0 0
\(996\) 2.38754e11 4.26767e10i 0.242612 0.0433665i
\(997\) 8.38483e11i 0.848621i −0.905517 0.424311i \(-0.860517\pi\)
0.905517 0.424311i \(-0.139483\pi\)
\(998\) 6.63583e10 + 7.48363e11i 0.0668918 + 0.754380i
\(999\) 7.74539e11i 0.777645i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 100.9.d.c.99.31 32
4.3 odd 2 inner 100.9.d.c.99.1 32
5.2 odd 4 100.9.b.d.51.10 16
5.3 odd 4 20.9.b.a.11.7 16
5.4 even 2 inner 100.9.d.c.99.2 32
15.8 even 4 180.9.c.a.91.10 16
20.3 even 4 20.9.b.a.11.8 yes 16
20.7 even 4 100.9.b.d.51.9 16
20.19 odd 2 inner 100.9.d.c.99.32 32
40.3 even 4 320.9.b.d.191.11 16
40.13 odd 4 320.9.b.d.191.6 16
60.23 odd 4 180.9.c.a.91.9 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.9.b.a.11.7 16 5.3 odd 4
20.9.b.a.11.8 yes 16 20.3 even 4
100.9.b.d.51.9 16 20.7 even 4
100.9.b.d.51.10 16 5.2 odd 4
100.9.d.c.99.1 32 4.3 odd 2 inner
100.9.d.c.99.2 32 5.4 even 2 inner
100.9.d.c.99.31 32 1.1 even 1 trivial
100.9.d.c.99.32 32 20.19 odd 2 inner
180.9.c.a.91.9 16 60.23 odd 4
180.9.c.a.91.10 16 15.8 even 4
320.9.b.d.191.6 16 40.13 odd 4
320.9.b.d.191.11 16 40.3 even 4