Properties

Label 320.9.b.d.191.6
Level $320$
Weight $9$
Character 320.191
Analytic conductor $130.361$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [320,9,Mod(191,320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(320, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("320.191"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 320.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-38800] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(130.361155220\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 5 x^{15} + 26 x^{14} - 834 x^{13} + 4390 x^{12} - 61783 x^{11} + 466168 x^{10} + \cdots + 206161212459445 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{120}\cdot 5^{16} \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 191.6
Root \(2.32463 - 7.96873i\) of defining polynomial
Character \(\chi\) \(=\) 320.191
Dual form 320.9.b.d.191.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-39.9624i q^{3} -279.508 q^{5} +2633.20i q^{7} +4964.01 q^{9} +2484.31i q^{11} -41319.8 q^{13} +11169.8i q^{15} -48625.0 q^{17} -241516. i q^{19} +105229. q^{21} +57735.4i q^{23} +78125.0 q^{25} -460567. i q^{27} +729286. q^{29} +134865. i q^{31} +99279.1 q^{33} -736001. i q^{35} -1.68171e6 q^{37} +1.65124e6i q^{39} -761790. q^{41} +2.54364e6i q^{43} -1.38748e6 q^{45} -5.65990e6i q^{47} -1.16893e6 q^{49} +1.94317e6i q^{51} -1.14302e7 q^{53} -694387. i q^{55} -9.65155e6 q^{57} +2.12902e7i q^{59} +2.63701e7 q^{61} +1.30712e7i q^{63} +1.15492e7 q^{65} +1.53982e6i q^{67} +2.30724e6 q^{69} +2.06597e7i q^{71} +2.51296e7 q^{73} -3.12206e6i q^{75} -6.54169e6 q^{77} +1.95344e7i q^{79} +1.41635e7 q^{81} -2.37076e7i q^{83} +1.35911e7 q^{85} -2.91440e7i q^{87} +3.86749e7 q^{89} -1.08803e8i q^{91} +5.38951e6 q^{93} +6.75057e7i q^{95} -9.46443e7 q^{97} +1.23322e7i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 38800 q^{9} - 51392 q^{13} + 27552 q^{17} - 414496 q^{21} + 1250000 q^{25} - 2764896 q^{29} - 5521600 q^{33} - 9009472 q^{37} - 8576448 q^{41} - 1580000 q^{45} - 32803600 q^{49} - 2452032 q^{53}+ \cdots + 171851232 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/320\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(257\) \(261\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 39.9624i − 0.493363i −0.969097 0.246681i \(-0.920660\pi\)
0.969097 0.246681i \(-0.0793401\pi\)
\(4\) 0 0
\(5\) −279.508 −0.447214
\(6\) 0 0
\(7\) 2633.20i 1.09671i 0.836246 + 0.548354i \(0.184745\pi\)
−0.836246 + 0.548354i \(0.815255\pi\)
\(8\) 0 0
\(9\) 4964.01 0.756593
\(10\) 0 0
\(11\) 2484.31i 0.169682i 0.996395 + 0.0848410i \(0.0270382\pi\)
−0.996395 + 0.0848410i \(0.972962\pi\)
\(12\) 0 0
\(13\) −41319.8 −1.44672 −0.723360 0.690471i \(-0.757403\pi\)
−0.723360 + 0.690471i \(0.757403\pi\)
\(14\) 0 0
\(15\) 11169.8i 0.220639i
\(16\) 0 0
\(17\) −48625.0 −0.582189 −0.291095 0.956694i \(-0.594019\pi\)
−0.291095 + 0.956694i \(0.594019\pi\)
\(18\) 0 0
\(19\) − 241516.i − 1.85324i −0.376002 0.926619i \(-0.622701\pi\)
0.376002 0.926619i \(-0.377299\pi\)
\(20\) 0 0
\(21\) 105229. 0.541075
\(22\) 0 0
\(23\) 57735.4i 0.206315i 0.994665 + 0.103158i \(0.0328946\pi\)
−0.994665 + 0.103158i \(0.967105\pi\)
\(24\) 0 0
\(25\) 78125.0 0.200000
\(26\) 0 0
\(27\) − 460567.i − 0.866638i
\(28\) 0 0
\(29\) 729286. 1.03111 0.515556 0.856856i \(-0.327585\pi\)
0.515556 + 0.856856i \(0.327585\pi\)
\(30\) 0 0
\(31\) 134865.i 0.146033i 0.997331 + 0.0730165i \(0.0232626\pi\)
−0.997331 + 0.0730165i \(0.976737\pi\)
\(32\) 0 0
\(33\) 99279.1 0.0837147
\(34\) 0 0
\(35\) − 736001.i − 0.490463i
\(36\) 0 0
\(37\) −1.68171e6 −0.897313 −0.448656 0.893704i \(-0.648097\pi\)
−0.448656 + 0.893704i \(0.648097\pi\)
\(38\) 0 0
\(39\) 1.65124e6i 0.713758i
\(40\) 0 0
\(41\) −761790. −0.269588 −0.134794 0.990874i \(-0.543037\pi\)
−0.134794 + 0.990874i \(0.543037\pi\)
\(42\) 0 0
\(43\) 2.54364e6i 0.744016i 0.928230 + 0.372008i \(0.121331\pi\)
−0.928230 + 0.372008i \(0.878669\pi\)
\(44\) 0 0
\(45\) −1.38748e6 −0.338359
\(46\) 0 0
\(47\) − 5.65990e6i − 1.15989i −0.814655 0.579946i \(-0.803074\pi\)
0.814655 0.579946i \(-0.196926\pi\)
\(48\) 0 0
\(49\) −1.16893e6 −0.202770
\(50\) 0 0
\(51\) 1.94317e6i 0.287230i
\(52\) 0 0
\(53\) −1.14302e7 −1.44861 −0.724305 0.689480i \(-0.757839\pi\)
−0.724305 + 0.689480i \(0.757839\pi\)
\(54\) 0 0
\(55\) − 694387.i − 0.0758841i
\(56\) 0 0
\(57\) −9.65155e6 −0.914318
\(58\) 0 0
\(59\) 2.12902e7i 1.75700i 0.477740 + 0.878501i \(0.341456\pi\)
−0.477740 + 0.878501i \(0.658544\pi\)
\(60\) 0 0
\(61\) 2.63701e7 1.90455 0.952276 0.305238i \(-0.0987361\pi\)
0.952276 + 0.305238i \(0.0987361\pi\)
\(62\) 0 0
\(63\) 1.30712e7i 0.829762i
\(64\) 0 0
\(65\) 1.15492e7 0.646993
\(66\) 0 0
\(67\) 1.53982e6i 0.0764137i 0.999270 + 0.0382068i \(0.0121646\pi\)
−0.999270 + 0.0382068i \(0.987835\pi\)
\(68\) 0 0
\(69\) 2.30724e6 0.101788
\(70\) 0 0
\(71\) 2.06597e7i 0.813002i 0.913650 + 0.406501i \(0.133251\pi\)
−0.913650 + 0.406501i \(0.866749\pi\)
\(72\) 0 0
\(73\) 2.51296e7 0.884899 0.442449 0.896793i \(-0.354110\pi\)
0.442449 + 0.896793i \(0.354110\pi\)
\(74\) 0 0
\(75\) − 3.12206e6i − 0.0986725i
\(76\) 0 0
\(77\) −6.54169e6 −0.186092
\(78\) 0 0
\(79\) 1.95344e7i 0.501525i 0.968049 + 0.250762i \(0.0806812\pi\)
−0.968049 + 0.250762i \(0.919319\pi\)
\(80\) 0 0
\(81\) 1.41635e7 0.329027
\(82\) 0 0
\(83\) − 2.37076e7i − 0.499547i −0.968304 0.249773i \(-0.919644\pi\)
0.968304 0.249773i \(-0.0803561\pi\)
\(84\) 0 0
\(85\) 1.35911e7 0.260363
\(86\) 0 0
\(87\) − 2.91440e7i − 0.508712i
\(88\) 0 0
\(89\) 3.86749e7 0.616410 0.308205 0.951320i \(-0.400272\pi\)
0.308205 + 0.951320i \(0.400272\pi\)
\(90\) 0 0
\(91\) − 1.08803e8i − 1.58663i
\(92\) 0 0
\(93\) 5.38951e6 0.0720473
\(94\) 0 0
\(95\) 6.75057e7i 0.828793i
\(96\) 0 0
\(97\) −9.46443e7 −1.06907 −0.534537 0.845145i \(-0.679514\pi\)
−0.534537 + 0.845145i \(0.679514\pi\)
\(98\) 0 0
\(99\) 1.23322e7i 0.128380i
\(100\) 0 0
\(101\) 6.52649e7 0.627183 0.313591 0.949558i \(-0.398468\pi\)
0.313591 + 0.949558i \(0.398468\pi\)
\(102\) 0 0
\(103\) − 1.47000e8i − 1.30607i −0.757326 0.653037i \(-0.773495\pi\)
0.757326 0.653037i \(-0.226505\pi\)
\(104\) 0 0
\(105\) −2.94124e7 −0.241976
\(106\) 0 0
\(107\) 2.42429e8i 1.84948i 0.380603 + 0.924739i \(0.375716\pi\)
−0.380603 + 0.924739i \(0.624284\pi\)
\(108\) 0 0
\(109\) 5.93486e7 0.420440 0.210220 0.977654i \(-0.432582\pi\)
0.210220 + 0.977654i \(0.432582\pi\)
\(110\) 0 0
\(111\) 6.72051e7i 0.442701i
\(112\) 0 0
\(113\) 5.46199e7 0.334994 0.167497 0.985873i \(-0.446432\pi\)
0.167497 + 0.985873i \(0.446432\pi\)
\(114\) 0 0
\(115\) − 1.61375e7i − 0.0922669i
\(116\) 0 0
\(117\) −2.05112e8 −1.09458
\(118\) 0 0
\(119\) − 1.28039e8i − 0.638492i
\(120\) 0 0
\(121\) 2.08187e8 0.971208
\(122\) 0 0
\(123\) 3.04430e7i 0.133005i
\(124\) 0 0
\(125\) −2.18366e7 −0.0894427
\(126\) 0 0
\(127\) − 2.01099e8i − 0.773026i −0.922284 0.386513i \(-0.873679\pi\)
0.922284 0.386513i \(-0.126321\pi\)
\(128\) 0 0
\(129\) 1.01650e8 0.367070
\(130\) 0 0
\(131\) − 4.36365e8i − 1.48172i −0.671662 0.740858i \(-0.734419\pi\)
0.671662 0.740858i \(-0.265581\pi\)
\(132\) 0 0
\(133\) 6.35959e8 2.03246
\(134\) 0 0
\(135\) 1.28732e8i 0.387572i
\(136\) 0 0
\(137\) 4.48301e8 1.27259 0.636293 0.771447i \(-0.280467\pi\)
0.636293 + 0.771447i \(0.280467\pi\)
\(138\) 0 0
\(139\) 4.73879e8i 1.26943i 0.772747 + 0.634714i \(0.218882\pi\)
−0.772747 + 0.634714i \(0.781118\pi\)
\(140\) 0 0
\(141\) −2.26183e8 −0.572248
\(142\) 0 0
\(143\) − 1.02651e8i − 0.245482i
\(144\) 0 0
\(145\) −2.03842e8 −0.461128
\(146\) 0 0
\(147\) 4.67132e7i 0.100039i
\(148\) 0 0
\(149\) 2.98504e8 0.605627 0.302814 0.953050i \(-0.402074\pi\)
0.302814 + 0.953050i \(0.402074\pi\)
\(150\) 0 0
\(151\) 7.25032e8i 1.39460i 0.716780 + 0.697299i \(0.245615\pi\)
−0.716780 + 0.697299i \(0.754385\pi\)
\(152\) 0 0
\(153\) −2.41375e8 −0.440480
\(154\) 0 0
\(155\) − 3.76958e7i − 0.0653080i
\(156\) 0 0
\(157\) 6.70288e8 1.10322 0.551611 0.834101i \(-0.314013\pi\)
0.551611 + 0.834101i \(0.314013\pi\)
\(158\) 0 0
\(159\) 4.56779e8i 0.714690i
\(160\) 0 0
\(161\) −1.52029e8 −0.226268
\(162\) 0 0
\(163\) − 9.70735e8i − 1.37515i −0.726113 0.687575i \(-0.758675\pi\)
0.726113 0.687575i \(-0.241325\pi\)
\(164\) 0 0
\(165\) −2.77493e7 −0.0374384
\(166\) 0 0
\(167\) − 7.98683e8i − 1.02685i −0.858133 0.513427i \(-0.828376\pi\)
0.858133 0.513427i \(-0.171624\pi\)
\(168\) 0 0
\(169\) 8.91594e8 1.09300
\(170\) 0 0
\(171\) − 1.19889e9i − 1.40215i
\(172\) 0 0
\(173\) −6.00425e8 −0.670308 −0.335154 0.942163i \(-0.608788\pi\)
−0.335154 + 0.942163i \(0.608788\pi\)
\(174\) 0 0
\(175\) 2.05719e8i 0.219342i
\(176\) 0 0
\(177\) 8.50809e8 0.866840
\(178\) 0 0
\(179\) 1.15845e9i 1.12840i 0.825637 + 0.564202i \(0.190816\pi\)
−0.825637 + 0.564202i \(0.809184\pi\)
\(180\) 0 0
\(181\) 7.96493e8 0.742109 0.371055 0.928611i \(-0.378996\pi\)
0.371055 + 0.928611i \(0.378996\pi\)
\(182\) 0 0
\(183\) − 1.05381e9i − 0.939635i
\(184\) 0 0
\(185\) 4.70052e8 0.401290
\(186\) 0 0
\(187\) − 1.20800e8i − 0.0987870i
\(188\) 0 0
\(189\) 1.21276e9 0.950449
\(190\) 0 0
\(191\) − 1.84245e9i − 1.38440i −0.721706 0.692200i \(-0.756642\pi\)
0.721706 0.692200i \(-0.243358\pi\)
\(192\) 0 0
\(193\) 2.34201e9 1.68795 0.843975 0.536382i \(-0.180209\pi\)
0.843975 + 0.536382i \(0.180209\pi\)
\(194\) 0 0
\(195\) − 4.61535e8i − 0.319202i
\(196\) 0 0
\(197\) 1.86381e9 1.23747 0.618737 0.785598i \(-0.287644\pi\)
0.618737 + 0.785598i \(0.287644\pi\)
\(198\) 0 0
\(199\) 1.82005e9i 1.16057i 0.814413 + 0.580286i \(0.197059\pi\)
−0.814413 + 0.580286i \(0.802941\pi\)
\(200\) 0 0
\(201\) 6.15349e7 0.0376997
\(202\) 0 0
\(203\) 1.92035e9i 1.13083i
\(204\) 0 0
\(205\) 2.12927e8 0.120563
\(206\) 0 0
\(207\) 2.86599e8i 0.156097i
\(208\) 0 0
\(209\) 6.00001e8 0.314461
\(210\) 0 0
\(211\) 2.89129e9i 1.45869i 0.684148 + 0.729344i \(0.260174\pi\)
−0.684148 + 0.729344i \(0.739826\pi\)
\(212\) 0 0
\(213\) 8.25613e8 0.401105
\(214\) 0 0
\(215\) − 7.10970e8i − 0.332734i
\(216\) 0 0
\(217\) −3.55125e8 −0.160156
\(218\) 0 0
\(219\) − 1.00424e9i − 0.436576i
\(220\) 0 0
\(221\) 2.00917e9 0.842265
\(222\) 0 0
\(223\) 2.26023e9i 0.913973i 0.889474 + 0.456986i \(0.151071\pi\)
−0.889474 + 0.456986i \(0.848929\pi\)
\(224\) 0 0
\(225\) 3.87813e8 0.151319
\(226\) 0 0
\(227\) 1.08021e9i 0.406823i 0.979093 + 0.203412i \(0.0652029\pi\)
−0.979093 + 0.203412i \(0.934797\pi\)
\(228\) 0 0
\(229\) −6.30352e8 −0.229214 −0.114607 0.993411i \(-0.536561\pi\)
−0.114607 + 0.993411i \(0.536561\pi\)
\(230\) 0 0
\(231\) 2.61421e8i 0.0918107i
\(232\) 0 0
\(233\) 1.17430e9 0.398435 0.199217 0.979955i \(-0.436160\pi\)
0.199217 + 0.979955i \(0.436160\pi\)
\(234\) 0 0
\(235\) 1.58199e9i 0.518720i
\(236\) 0 0
\(237\) 7.80642e8 0.247434
\(238\) 0 0
\(239\) − 3.05182e9i − 0.935334i −0.883905 0.467667i \(-0.845095\pi\)
0.883905 0.467667i \(-0.154905\pi\)
\(240\) 0 0
\(241\) 2.81871e9 0.835570 0.417785 0.908546i \(-0.362807\pi\)
0.417785 + 0.908546i \(0.362807\pi\)
\(242\) 0 0
\(243\) − 3.58779e9i − 1.02897i
\(244\) 0 0
\(245\) 3.26726e8 0.0906815
\(246\) 0 0
\(247\) 9.97938e9i 2.68112i
\(248\) 0 0
\(249\) −9.47414e8 −0.246458
\(250\) 0 0
\(251\) − 2.92571e8i − 0.0737116i −0.999321 0.0368558i \(-0.988266\pi\)
0.999321 0.0368558i \(-0.0117342\pi\)
\(252\) 0 0
\(253\) −1.43433e8 −0.0350079
\(254\) 0 0
\(255\) − 5.43133e8i − 0.128453i
\(256\) 0 0
\(257\) 3.03746e9 0.696270 0.348135 0.937444i \(-0.386815\pi\)
0.348135 + 0.937444i \(0.386815\pi\)
\(258\) 0 0
\(259\) − 4.42827e9i − 0.984091i
\(260\) 0 0
\(261\) 3.62018e9 0.780133
\(262\) 0 0
\(263\) 1.69827e9i 0.354964i 0.984124 + 0.177482i \(0.0567951\pi\)
−0.984124 + 0.177482i \(0.943205\pi\)
\(264\) 0 0
\(265\) 3.19485e9 0.647838
\(266\) 0 0
\(267\) − 1.54554e9i − 0.304114i
\(268\) 0 0
\(269\) 8.70547e8 0.166258 0.0831291 0.996539i \(-0.473509\pi\)
0.0831291 + 0.996539i \(0.473509\pi\)
\(270\) 0 0
\(271\) − 7.36841e9i − 1.36614i −0.730351 0.683072i \(-0.760643\pi\)
0.730351 0.683072i \(-0.239357\pi\)
\(272\) 0 0
\(273\) −4.34803e9 −0.782785
\(274\) 0 0
\(275\) 1.94087e8i 0.0339364i
\(276\) 0 0
\(277\) −2.37339e9 −0.403135 −0.201568 0.979475i \(-0.564604\pi\)
−0.201568 + 0.979475i \(0.564604\pi\)
\(278\) 0 0
\(279\) 6.69469e8i 0.110488i
\(280\) 0 0
\(281\) 5.50733e9 0.883315 0.441657 0.897184i \(-0.354391\pi\)
0.441657 + 0.897184i \(0.354391\pi\)
\(282\) 0 0
\(283\) 4.55904e9i 0.710768i 0.934720 + 0.355384i \(0.115650\pi\)
−0.934720 + 0.355384i \(0.884350\pi\)
\(284\) 0 0
\(285\) 2.69769e9 0.408896
\(286\) 0 0
\(287\) − 2.00594e9i − 0.295659i
\(288\) 0 0
\(289\) −4.61137e9 −0.661056
\(290\) 0 0
\(291\) 3.78221e9i 0.527441i
\(292\) 0 0
\(293\) 8.27611e9 1.12294 0.561469 0.827498i \(-0.310237\pi\)
0.561469 + 0.827498i \(0.310237\pi\)
\(294\) 0 0
\(295\) − 5.95080e9i − 0.785756i
\(296\) 0 0
\(297\) 1.14419e9 0.147053
\(298\) 0 0
\(299\) − 2.38562e9i − 0.298480i
\(300\) 0 0
\(301\) −6.69791e9 −0.815969
\(302\) 0 0
\(303\) − 2.60814e9i − 0.309429i
\(304\) 0 0
\(305\) −7.37067e9 −0.851742
\(306\) 0 0
\(307\) − 7.73582e9i − 0.870869i −0.900221 0.435434i \(-0.856595\pi\)
0.900221 0.435434i \(-0.143405\pi\)
\(308\) 0 0
\(309\) −5.87446e9 −0.644368
\(310\) 0 0
\(311\) − 1.08068e10i − 1.15520i −0.816321 0.577599i \(-0.803990\pi\)
0.816321 0.577599i \(-0.196010\pi\)
\(312\) 0 0
\(313\) −4.73025e9 −0.492841 −0.246421 0.969163i \(-0.579254\pi\)
−0.246421 + 0.969163i \(0.579254\pi\)
\(314\) 0 0
\(315\) − 3.65352e9i − 0.371081i
\(316\) 0 0
\(317\) 5.44758e9 0.539469 0.269735 0.962935i \(-0.413064\pi\)
0.269735 + 0.962935i \(0.413064\pi\)
\(318\) 0 0
\(319\) 1.81178e9i 0.174961i
\(320\) 0 0
\(321\) 9.68803e9 0.912463
\(322\) 0 0
\(323\) 1.17437e10i 1.07893i
\(324\) 0 0
\(325\) −3.22811e9 −0.289344
\(326\) 0 0
\(327\) − 2.37171e9i − 0.207429i
\(328\) 0 0
\(329\) 1.49036e10 1.27206
\(330\) 0 0
\(331\) 8.65354e8i 0.0720911i 0.999350 + 0.0360456i \(0.0114761\pi\)
−0.999350 + 0.0360456i \(0.988524\pi\)
\(332\) 0 0
\(333\) −8.34801e9 −0.678901
\(334\) 0 0
\(335\) − 4.30393e8i − 0.0341732i
\(336\) 0 0
\(337\) 8.64475e8 0.0670244 0.0335122 0.999438i \(-0.489331\pi\)
0.0335122 + 0.999438i \(0.489331\pi\)
\(338\) 0 0
\(339\) − 2.18274e9i − 0.165274i
\(340\) 0 0
\(341\) −3.35046e8 −0.0247792
\(342\) 0 0
\(343\) 1.21018e10i 0.874329i
\(344\) 0 0
\(345\) −6.44895e8 −0.0455211
\(346\) 0 0
\(347\) 1.10077e10i 0.759239i 0.925143 + 0.379620i \(0.123945\pi\)
−0.925143 + 0.379620i \(0.876055\pi\)
\(348\) 0 0
\(349\) 1.99631e10 1.34563 0.672816 0.739810i \(-0.265085\pi\)
0.672816 + 0.739810i \(0.265085\pi\)
\(350\) 0 0
\(351\) 1.90305e10i 1.25378i
\(352\) 0 0
\(353\) 1.32468e10 0.853126 0.426563 0.904458i \(-0.359724\pi\)
0.426563 + 0.904458i \(0.359724\pi\)
\(354\) 0 0
\(355\) − 5.77457e9i − 0.363586i
\(356\) 0 0
\(357\) −5.11675e9 −0.315008
\(358\) 0 0
\(359\) 2.59685e9i 0.156340i 0.996940 + 0.0781699i \(0.0249076\pi\)
−0.996940 + 0.0781699i \(0.975092\pi\)
\(360\) 0 0
\(361\) −4.13463e10 −2.43449
\(362\) 0 0
\(363\) − 8.31965e9i − 0.479158i
\(364\) 0 0
\(365\) −7.02393e9 −0.395739
\(366\) 0 0
\(367\) 3.62330e9i 0.199728i 0.995001 + 0.0998642i \(0.0318408\pi\)
−0.995001 + 0.0998642i \(0.968159\pi\)
\(368\) 0 0
\(369\) −3.78153e9 −0.203968
\(370\) 0 0
\(371\) − 3.00981e10i − 1.58870i
\(372\) 0 0
\(373\) −4.15162e9 −0.214478 −0.107239 0.994233i \(-0.534201\pi\)
−0.107239 + 0.994233i \(0.534201\pi\)
\(374\) 0 0
\(375\) 8.72643e8i 0.0441277i
\(376\) 0 0
\(377\) −3.01339e10 −1.49173
\(378\) 0 0
\(379\) 1.89551e10i 0.918692i 0.888257 + 0.459346i \(0.151916\pi\)
−0.888257 + 0.459346i \(0.848084\pi\)
\(380\) 0 0
\(381\) −8.03638e9 −0.381382
\(382\) 0 0
\(383\) 8.87673e9i 0.412532i 0.978496 + 0.206266i \(0.0661313\pi\)
−0.978496 + 0.206266i \(0.933869\pi\)
\(384\) 0 0
\(385\) 1.82846e9 0.0832227
\(386\) 0 0
\(387\) 1.26267e10i 0.562918i
\(388\) 0 0
\(389\) −2.05595e10 −0.897872 −0.448936 0.893564i \(-0.648197\pi\)
−0.448936 + 0.893564i \(0.648197\pi\)
\(390\) 0 0
\(391\) − 2.80739e9i − 0.120114i
\(392\) 0 0
\(393\) −1.74382e10 −0.731023
\(394\) 0 0
\(395\) − 5.46004e9i − 0.224289i
\(396\) 0 0
\(397\) −2.04868e10 −0.824733 −0.412366 0.911018i \(-0.635298\pi\)
−0.412366 + 0.911018i \(0.635298\pi\)
\(398\) 0 0
\(399\) − 2.54144e10i − 1.00274i
\(400\) 0 0
\(401\) −7.30576e9 −0.282545 −0.141273 0.989971i \(-0.545119\pi\)
−0.141273 + 0.989971i \(0.545119\pi\)
\(402\) 0 0
\(403\) − 5.57258e9i − 0.211269i
\(404\) 0 0
\(405\) −3.95882e9 −0.147145
\(406\) 0 0
\(407\) − 4.17789e9i − 0.152258i
\(408\) 0 0
\(409\) −1.05889e10 −0.378406 −0.189203 0.981938i \(-0.560590\pi\)
−0.189203 + 0.981938i \(0.560590\pi\)
\(410\) 0 0
\(411\) − 1.79152e10i − 0.627847i
\(412\) 0 0
\(413\) −5.60614e10 −1.92692
\(414\) 0 0
\(415\) 6.62649e9i 0.223404i
\(416\) 0 0
\(417\) 1.89373e10 0.626289
\(418\) 0 0
\(419\) 2.61037e9i 0.0846928i 0.999103 + 0.0423464i \(0.0134833\pi\)
−0.999103 + 0.0423464i \(0.986517\pi\)
\(420\) 0 0
\(421\) −9.29505e9 −0.295885 −0.147943 0.988996i \(-0.547265\pi\)
−0.147943 + 0.988996i \(0.547265\pi\)
\(422\) 0 0
\(423\) − 2.80958e10i − 0.877567i
\(424\) 0 0
\(425\) −3.79883e9 −0.116438
\(426\) 0 0
\(427\) 6.94377e10i 2.08874i
\(428\) 0 0
\(429\) −4.10219e9 −0.121112
\(430\) 0 0
\(431\) 1.86560e10i 0.540642i 0.962770 + 0.270321i \(0.0871298\pi\)
−0.962770 + 0.270321i \(0.912870\pi\)
\(432\) 0 0
\(433\) −1.66970e10 −0.474994 −0.237497 0.971388i \(-0.576327\pi\)
−0.237497 + 0.971388i \(0.576327\pi\)
\(434\) 0 0
\(435\) 8.14600e9i 0.227503i
\(436\) 0 0
\(437\) 1.39440e10 0.382351
\(438\) 0 0
\(439\) 5.48360e9i 0.147641i 0.997272 + 0.0738206i \(0.0235192\pi\)
−0.997272 + 0.0738206i \(0.976481\pi\)
\(440\) 0 0
\(441\) −5.80257e9 −0.153414
\(442\) 0 0
\(443\) − 5.97812e9i − 0.155221i −0.996984 0.0776104i \(-0.975271\pi\)
0.996984 0.0776104i \(-0.0247290\pi\)
\(444\) 0 0
\(445\) −1.08100e10 −0.275667
\(446\) 0 0
\(447\) − 1.19289e10i − 0.298794i
\(448\) 0 0
\(449\) −3.11696e10 −0.766913 −0.383456 0.923559i \(-0.625266\pi\)
−0.383456 + 0.923559i \(0.625266\pi\)
\(450\) 0 0
\(451\) − 1.89253e9i − 0.0457442i
\(452\) 0 0
\(453\) 2.89740e10 0.688043
\(454\) 0 0
\(455\) 3.04114e10i 0.709563i
\(456\) 0 0
\(457\) −4.33966e9 −0.0994927 −0.0497463 0.998762i \(-0.515841\pi\)
−0.0497463 + 0.998762i \(0.515841\pi\)
\(458\) 0 0
\(459\) 2.23951e10i 0.504547i
\(460\) 0 0
\(461\) 5.16164e10 1.14284 0.571418 0.820659i \(-0.306393\pi\)
0.571418 + 0.820659i \(0.306393\pi\)
\(462\) 0 0
\(463\) − 6.86820e10i − 1.49458i −0.664499 0.747289i \(-0.731355\pi\)
0.664499 0.747289i \(-0.268645\pi\)
\(464\) 0 0
\(465\) −1.50641e9 −0.0322205
\(466\) 0 0
\(467\) − 2.14596e10i − 0.451185i −0.974222 0.225592i \(-0.927568\pi\)
0.974222 0.225592i \(-0.0724317\pi\)
\(468\) 0 0
\(469\) −4.05465e9 −0.0838036
\(470\) 0 0
\(471\) − 2.67863e10i − 0.544289i
\(472\) 0 0
\(473\) −6.31921e9 −0.126246
\(474\) 0 0
\(475\) − 1.88684e10i − 0.370648i
\(476\) 0 0
\(477\) −5.67397e10 −1.09601
\(478\) 0 0
\(479\) 8.24617e10i 1.56643i 0.621753 + 0.783213i \(0.286421\pi\)
−0.621753 + 0.783213i \(0.713579\pi\)
\(480\) 0 0
\(481\) 6.94878e10 1.29816
\(482\) 0 0
\(483\) 6.07543e9i 0.111632i
\(484\) 0 0
\(485\) 2.64539e10 0.478104
\(486\) 0 0
\(487\) 2.94674e9i 0.0523874i 0.999657 + 0.0261937i \(0.00833866\pi\)
−0.999657 + 0.0261937i \(0.991661\pi\)
\(488\) 0 0
\(489\) −3.87929e10 −0.678448
\(490\) 0 0
\(491\) − 8.17812e10i − 1.40711i −0.710642 0.703554i \(-0.751595\pi\)
0.710642 0.703554i \(-0.248405\pi\)
\(492\) 0 0
\(493\) −3.54616e10 −0.600302
\(494\) 0 0
\(495\) − 3.44694e9i − 0.0574134i
\(496\) 0 0
\(497\) −5.44012e10 −0.891626
\(498\) 0 0
\(499\) 4.69562e10i 0.757340i 0.925532 + 0.378670i \(0.123618\pi\)
−0.925532 + 0.378670i \(0.876382\pi\)
\(500\) 0 0
\(501\) −3.19173e10 −0.506612
\(502\) 0 0
\(503\) 8.89245e10i 1.38915i 0.719420 + 0.694575i \(0.244408\pi\)
−0.719420 + 0.694575i \(0.755592\pi\)
\(504\) 0 0
\(505\) −1.82421e10 −0.280485
\(506\) 0 0
\(507\) − 3.56302e10i − 0.539245i
\(508\) 0 0
\(509\) −1.30873e11 −1.94975 −0.974877 0.222745i \(-0.928498\pi\)
−0.974877 + 0.222745i \(0.928498\pi\)
\(510\) 0 0
\(511\) 6.61711e10i 0.970476i
\(512\) 0 0
\(513\) −1.11234e11 −1.60609
\(514\) 0 0
\(515\) 4.10877e10i 0.584094i
\(516\) 0 0
\(517\) 1.40610e10 0.196813
\(518\) 0 0
\(519\) 2.39944e10i 0.330705i
\(520\) 0 0
\(521\) 7.03085e10 0.954238 0.477119 0.878839i \(-0.341681\pi\)
0.477119 + 0.878839i \(0.341681\pi\)
\(522\) 0 0
\(523\) − 7.40744e10i − 0.990060i −0.868876 0.495030i \(-0.835157\pi\)
0.868876 0.495030i \(-0.164843\pi\)
\(524\) 0 0
\(525\) 8.22100e9 0.108215
\(526\) 0 0
\(527\) − 6.55779e9i − 0.0850189i
\(528\) 0 0
\(529\) 7.49776e10 0.957434
\(530\) 0 0
\(531\) 1.05685e11i 1.32934i
\(532\) 0 0
\(533\) 3.14770e10 0.390018
\(534\) 0 0
\(535\) − 6.77609e10i − 0.827111i
\(536\) 0 0
\(537\) 4.62943e10 0.556712
\(538\) 0 0
\(539\) − 2.90399e9i − 0.0344064i
\(540\) 0 0
\(541\) −3.35458e9 −0.0391605 −0.0195803 0.999808i \(-0.506233\pi\)
−0.0195803 + 0.999808i \(0.506233\pi\)
\(542\) 0 0
\(543\) − 3.18298e10i − 0.366129i
\(544\) 0 0
\(545\) −1.65884e10 −0.188027
\(546\) 0 0
\(547\) − 1.13812e11i − 1.27128i −0.771987 0.635638i \(-0.780737\pi\)
0.771987 0.635638i \(-0.219263\pi\)
\(548\) 0 0
\(549\) 1.30902e11 1.44097
\(550\) 0 0
\(551\) − 1.76134e11i − 1.91090i
\(552\) 0 0
\(553\) −5.14380e10 −0.550026
\(554\) 0 0
\(555\) − 1.87844e10i − 0.197982i
\(556\) 0 0
\(557\) 1.05403e11 1.09505 0.547524 0.836790i \(-0.315570\pi\)
0.547524 + 0.836790i \(0.315570\pi\)
\(558\) 0 0
\(559\) − 1.05103e11i − 1.07638i
\(560\) 0 0
\(561\) −4.82745e9 −0.0487378
\(562\) 0 0
\(563\) 7.97945e10i 0.794217i 0.917772 + 0.397108i \(0.129986\pi\)
−0.917772 + 0.397108i \(0.870014\pi\)
\(564\) 0 0
\(565\) −1.52667e10 −0.149814
\(566\) 0 0
\(567\) 3.72953e10i 0.360846i
\(568\) 0 0
\(569\) −4.57243e10 −0.436212 −0.218106 0.975925i \(-0.569988\pi\)
−0.218106 + 0.975925i \(0.569988\pi\)
\(570\) 0 0
\(571\) 2.16780e10i 0.203927i 0.994788 + 0.101964i \(0.0325126\pi\)
−0.994788 + 0.101964i \(0.967487\pi\)
\(572\) 0 0
\(573\) −7.36286e10 −0.683011
\(574\) 0 0
\(575\) 4.51058e9i 0.0412630i
\(576\) 0 0
\(577\) 1.69273e11 1.52716 0.763579 0.645715i \(-0.223440\pi\)
0.763579 + 0.645715i \(0.223440\pi\)
\(578\) 0 0
\(579\) − 9.35923e10i − 0.832772i
\(580\) 0 0
\(581\) 6.24269e10 0.547857
\(582\) 0 0
\(583\) − 2.83963e10i − 0.245803i
\(584\) 0 0
\(585\) 5.73305e10 0.489511
\(586\) 0 0
\(587\) − 3.75401e10i − 0.316187i −0.987424 0.158093i \(-0.949465\pi\)
0.987424 0.158093i \(-0.0505347\pi\)
\(588\) 0 0
\(589\) 3.25719e10 0.270634
\(590\) 0 0
\(591\) − 7.44822e10i − 0.610524i
\(592\) 0 0
\(593\) 1.04118e11 0.841994 0.420997 0.907062i \(-0.361680\pi\)
0.420997 + 0.907062i \(0.361680\pi\)
\(594\) 0 0
\(595\) 3.57881e10i 0.285542i
\(596\) 0 0
\(597\) 7.27337e10 0.572583
\(598\) 0 0
\(599\) 4.81442e10i 0.373970i 0.982363 + 0.186985i \(0.0598716\pi\)
−0.982363 + 0.186985i \(0.940128\pi\)
\(600\) 0 0
\(601\) −1.48443e11 −1.13779 −0.568896 0.822410i \(-0.692629\pi\)
−0.568896 + 0.822410i \(0.692629\pi\)
\(602\) 0 0
\(603\) 7.64369e9i 0.0578141i
\(604\) 0 0
\(605\) −5.81901e10 −0.434337
\(606\) 0 0
\(607\) − 5.44460e10i − 0.401062i −0.979687 0.200531i \(-0.935733\pi\)
0.979687 0.200531i \(-0.0642667\pi\)
\(608\) 0 0
\(609\) 7.67419e10 0.557909
\(610\) 0 0
\(611\) 2.33866e11i 1.67804i
\(612\) 0 0
\(613\) −1.16278e11 −0.823484 −0.411742 0.911301i \(-0.635079\pi\)
−0.411742 + 0.911301i \(0.635079\pi\)
\(614\) 0 0
\(615\) − 8.50906e9i − 0.0594814i
\(616\) 0 0
\(617\) −4.87411e10 −0.336321 −0.168161 0.985760i \(-0.553783\pi\)
−0.168161 + 0.985760i \(0.553783\pi\)
\(618\) 0 0
\(619\) − 4.92280e10i − 0.335312i −0.985846 0.167656i \(-0.946380\pi\)
0.985846 0.167656i \(-0.0536198\pi\)
\(620\) 0 0
\(621\) 2.65910e10 0.178800
\(622\) 0 0
\(623\) 1.01839e11i 0.676022i
\(624\) 0 0
\(625\) 6.10352e9 0.0400000
\(626\) 0 0
\(627\) − 2.39775e10i − 0.155143i
\(628\) 0 0
\(629\) 8.17731e10 0.522406
\(630\) 0 0
\(631\) 1.10376e11i 0.696240i 0.937450 + 0.348120i \(0.113180\pi\)
−0.937450 + 0.348120i \(0.886820\pi\)
\(632\) 0 0
\(633\) 1.15543e11 0.719662
\(634\) 0 0
\(635\) 5.62088e10i 0.345708i
\(636\) 0 0
\(637\) 4.82999e10 0.293352
\(638\) 0 0
\(639\) 1.02555e11i 0.615112i
\(640\) 0 0
\(641\) 2.15342e11 1.27554 0.637772 0.770225i \(-0.279856\pi\)
0.637772 + 0.770225i \(0.279856\pi\)
\(642\) 0 0
\(643\) − 1.22051e11i − 0.713996i −0.934105 0.356998i \(-0.883800\pi\)
0.934105 0.356998i \(-0.116200\pi\)
\(644\) 0 0
\(645\) −2.84120e10 −0.164159
\(646\) 0 0
\(647\) 2.92452e11i 1.66893i 0.551064 + 0.834463i \(0.314222\pi\)
−0.551064 + 0.834463i \(0.685778\pi\)
\(648\) 0 0
\(649\) −5.28916e10 −0.298132
\(650\) 0 0
\(651\) 1.41916e10i 0.0790149i
\(652\) 0 0
\(653\) 2.80990e10 0.154539 0.0772696 0.997010i \(-0.475380\pi\)
0.0772696 + 0.997010i \(0.475380\pi\)
\(654\) 0 0
\(655\) 1.21968e11i 0.662644i
\(656\) 0 0
\(657\) 1.24743e11 0.669509
\(658\) 0 0
\(659\) − 2.51394e11i − 1.33295i −0.745529 0.666473i \(-0.767803\pi\)
0.745529 0.666473i \(-0.232197\pi\)
\(660\) 0 0
\(661\) 2.53415e11 1.32748 0.663738 0.747965i \(-0.268969\pi\)
0.663738 + 0.747965i \(0.268969\pi\)
\(662\) 0 0
\(663\) − 8.02914e10i − 0.415542i
\(664\) 0 0
\(665\) −1.77756e11 −0.908945
\(666\) 0 0
\(667\) 4.21056e10i 0.212734i
\(668\) 0 0
\(669\) 9.03242e10 0.450920
\(670\) 0 0
\(671\) 6.55116e10i 0.323168i
\(672\) 0 0
\(673\) −1.77857e11 −0.866981 −0.433491 0.901158i \(-0.642718\pi\)
−0.433491 + 0.901158i \(0.642718\pi\)
\(674\) 0 0
\(675\) − 3.59818e10i − 0.173328i
\(676\) 0 0
\(677\) 2.43910e11 1.16111 0.580556 0.814220i \(-0.302835\pi\)
0.580556 + 0.814220i \(0.302835\pi\)
\(678\) 0 0
\(679\) − 2.49217e11i − 1.17246i
\(680\) 0 0
\(681\) 4.31678e10 0.200711
\(682\) 0 0
\(683\) 2.74209e11i 1.26008i 0.776562 + 0.630041i \(0.216962\pi\)
−0.776562 + 0.630041i \(0.783038\pi\)
\(684\) 0 0
\(685\) −1.25304e11 −0.569118
\(686\) 0 0
\(687\) 2.51904e10i 0.113086i
\(688\) 0 0
\(689\) 4.72295e11 2.09573
\(690\) 0 0
\(691\) 1.07912e11i 0.473323i 0.971592 + 0.236661i \(0.0760532\pi\)
−0.971592 + 0.236661i \(0.923947\pi\)
\(692\) 0 0
\(693\) −3.24730e10 −0.140796
\(694\) 0 0
\(695\) − 1.32453e11i − 0.567706i
\(696\) 0 0
\(697\) 3.70421e10 0.156951
\(698\) 0 0
\(699\) − 4.69280e10i − 0.196573i
\(700\) 0 0
\(701\) 1.00364e11 0.415630 0.207815 0.978168i \(-0.433365\pi\)
0.207815 + 0.978168i \(0.433365\pi\)
\(702\) 0 0
\(703\) 4.06159e11i 1.66293i
\(704\) 0 0
\(705\) 6.32201e10 0.255917
\(706\) 0 0
\(707\) 1.71855e11i 0.687837i
\(708\) 0 0
\(709\) 4.36108e11 1.72587 0.862937 0.505311i \(-0.168622\pi\)
0.862937 + 0.505311i \(0.168622\pi\)
\(710\) 0 0
\(711\) 9.69690e10i 0.379450i
\(712\) 0 0
\(713\) −7.78647e9 −0.0301288
\(714\) 0 0
\(715\) 2.86919e10i 0.109783i
\(716\) 0 0
\(717\) −1.21958e11 −0.461459
\(718\) 0 0
\(719\) − 3.29910e11i − 1.23447i −0.786780 0.617234i \(-0.788253\pi\)
0.786780 0.617234i \(-0.211747\pi\)
\(720\) 0 0
\(721\) 3.87079e11 1.43238
\(722\) 0 0
\(723\) − 1.12642e11i − 0.412239i
\(724\) 0 0
\(725\) 5.69755e10 0.206222
\(726\) 0 0
\(727\) − 2.87638e11i − 1.02969i −0.857282 0.514847i \(-0.827849\pi\)
0.857282 0.514847i \(-0.172151\pi\)
\(728\) 0 0
\(729\) −5.04496e10 −0.178627
\(730\) 0 0
\(731\) − 1.23685e11i − 0.433158i
\(732\) 0 0
\(733\) −7.34639e10 −0.254483 −0.127241 0.991872i \(-0.540612\pi\)
−0.127241 + 0.991872i \(0.540612\pi\)
\(734\) 0 0
\(735\) − 1.30567e10i − 0.0447389i
\(736\) 0 0
\(737\) −3.82540e9 −0.0129660
\(738\) 0 0
\(739\) 3.53166e11i 1.18413i 0.805889 + 0.592067i \(0.201688\pi\)
−0.805889 + 0.592067i \(0.798312\pi\)
\(740\) 0 0
\(741\) 3.98800e11 1.32276
\(742\) 0 0
\(743\) − 2.51184e11i − 0.824208i −0.911137 0.412104i \(-0.864794\pi\)
0.911137 0.412104i \(-0.135206\pi\)
\(744\) 0 0
\(745\) −8.34345e10 −0.270845
\(746\) 0 0
\(747\) − 1.17685e11i − 0.377954i
\(748\) 0 0
\(749\) −6.38363e11 −2.02834
\(750\) 0 0
\(751\) 5.06685e11i 1.59286i 0.604729 + 0.796431i \(0.293281\pi\)
−0.604729 + 0.796431i \(0.706719\pi\)
\(752\) 0 0
\(753\) −1.16918e10 −0.0363666
\(754\) 0 0
\(755\) − 2.02653e11i − 0.623684i
\(756\) 0 0
\(757\) −9.66712e10 −0.294384 −0.147192 0.989108i \(-0.547023\pi\)
−0.147192 + 0.989108i \(0.547023\pi\)
\(758\) 0 0
\(759\) 5.73192e9i 0.0172716i
\(760\) 0 0
\(761\) 5.18752e11 1.54675 0.773376 0.633947i \(-0.218566\pi\)
0.773376 + 0.633947i \(0.218566\pi\)
\(762\) 0 0
\(763\) 1.56276e11i 0.461100i
\(764\) 0 0
\(765\) 6.74664e10 0.196989
\(766\) 0 0
\(767\) − 8.79708e11i − 2.54189i
\(768\) 0 0
\(769\) 1.06291e11 0.303943 0.151972 0.988385i \(-0.451438\pi\)
0.151972 + 0.988385i \(0.451438\pi\)
\(770\) 0 0
\(771\) − 1.21384e11i − 0.343514i
\(772\) 0 0
\(773\) 9.89630e10 0.277176 0.138588 0.990350i \(-0.455744\pi\)
0.138588 + 0.990350i \(0.455744\pi\)
\(774\) 0 0
\(775\) 1.05363e10i 0.0292066i
\(776\) 0 0
\(777\) −1.76964e11 −0.485514
\(778\) 0 0
\(779\) 1.83984e11i 0.499610i
\(780\) 0 0
\(781\) −5.13253e10 −0.137952
\(782\) 0 0
\(783\) − 3.35885e11i − 0.893601i
\(784\) 0 0
\(785\) −1.87351e11 −0.493376
\(786\) 0 0
\(787\) − 3.29755e11i − 0.859592i −0.902926 0.429796i \(-0.858585\pi\)
0.902926 0.429796i \(-0.141415\pi\)
\(788\) 0 0
\(789\) 6.78670e10 0.175126
\(790\) 0 0
\(791\) 1.43825e11i 0.367391i
\(792\) 0 0
\(793\) −1.08961e12 −2.75535
\(794\) 0 0
\(795\) − 1.27674e11i − 0.319619i
\(796\) 0 0
\(797\) −6.85369e10 −0.169860 −0.0849300 0.996387i \(-0.527067\pi\)
−0.0849300 + 0.996387i \(0.527067\pi\)
\(798\) 0 0
\(799\) 2.75213e11i 0.675277i
\(800\) 0 0
\(801\) 1.91983e11 0.466371
\(802\) 0 0
\(803\) 6.24297e10i 0.150151i
\(804\) 0 0
\(805\) 4.24933e10 0.101190
\(806\) 0 0
\(807\) − 3.47891e10i − 0.0820256i
\(808\) 0 0
\(809\) −7.62508e11 −1.78012 −0.890062 0.455840i \(-0.849339\pi\)
−0.890062 + 0.455840i \(0.849339\pi\)
\(810\) 0 0
\(811\) − 4.40805e11i − 1.01897i −0.860478 0.509487i \(-0.829835\pi\)
0.860478 0.509487i \(-0.170165\pi\)
\(812\) 0 0
\(813\) −2.94459e11 −0.674005
\(814\) 0 0
\(815\) 2.71329e11i 0.614986i
\(816\) 0 0
\(817\) 6.14330e11 1.37884
\(818\) 0 0
\(819\) − 5.40100e11i − 1.20043i
\(820\) 0 0
\(821\) 2.67657e11 0.589123 0.294562 0.955632i \(-0.404826\pi\)
0.294562 + 0.955632i \(0.404826\pi\)
\(822\) 0 0
\(823\) 3.84869e11i 0.838906i 0.907777 + 0.419453i \(0.137778\pi\)
−0.907777 + 0.419453i \(0.862222\pi\)
\(824\) 0 0
\(825\) 7.75618e9 0.0167429
\(826\) 0 0
\(827\) 4.88174e11i 1.04364i 0.853054 + 0.521822i \(0.174747\pi\)
−0.853054 + 0.521822i \(0.825253\pi\)
\(828\) 0 0
\(829\) 1.47134e11 0.311526 0.155763 0.987794i \(-0.450216\pi\)
0.155763 + 0.987794i \(0.450216\pi\)
\(830\) 0 0
\(831\) 9.48464e10i 0.198892i
\(832\) 0 0
\(833\) 5.68392e10 0.118050
\(834\) 0 0
\(835\) 2.23239e11i 0.459223i
\(836\) 0 0
\(837\) 6.21142e10 0.126558
\(838\) 0 0
\(839\) 4.39919e11i 0.887821i 0.896071 + 0.443910i \(0.146409\pi\)
−0.896071 + 0.443910i \(0.853591\pi\)
\(840\) 0 0
\(841\) 3.16120e10 0.0631929
\(842\) 0 0
\(843\) − 2.20086e11i − 0.435794i
\(844\) 0 0
\(845\) −2.49208e11 −0.488804
\(846\) 0 0
\(847\) 5.48198e11i 1.06513i
\(848\) 0 0
\(849\) 1.82190e11 0.350666
\(850\) 0 0
\(851\) − 9.70941e10i − 0.185129i
\(852\) 0 0
\(853\) −6.98819e11 −1.31998 −0.659992 0.751273i \(-0.729440\pi\)
−0.659992 + 0.751273i \(0.729440\pi\)
\(854\) 0 0
\(855\) 3.35099e11i 0.627059i
\(856\) 0 0
\(857\) 3.28226e10 0.0608485 0.0304242 0.999537i \(-0.490314\pi\)
0.0304242 + 0.999537i \(0.490314\pi\)
\(858\) 0 0
\(859\) 6.28697e11i 1.15470i 0.816497 + 0.577349i \(0.195913\pi\)
−0.816497 + 0.577349i \(0.804087\pi\)
\(860\) 0 0
\(861\) −8.01623e10 −0.145867
\(862\) 0 0
\(863\) − 7.90308e11i − 1.42480i −0.701775 0.712399i \(-0.747609\pi\)
0.701775 0.712399i \(-0.252391\pi\)
\(864\) 0 0
\(865\) 1.67824e11 0.299771
\(866\) 0 0
\(867\) 1.84281e11i 0.326140i
\(868\) 0 0
\(869\) −4.85296e10 −0.0850997
\(870\) 0 0
\(871\) − 6.36251e10i − 0.110549i
\(872\) 0 0
\(873\) −4.69815e11 −0.808854
\(874\) 0 0
\(875\) − 5.75001e10i − 0.0980926i
\(876\) 0 0
\(877\) −7.21024e10 −0.121885 −0.0609427 0.998141i \(-0.519411\pi\)
−0.0609427 + 0.998141i \(0.519411\pi\)
\(878\) 0 0
\(879\) − 3.30733e11i − 0.554015i
\(880\) 0 0
\(881\) −5.33265e11 −0.885196 −0.442598 0.896720i \(-0.645943\pi\)
−0.442598 + 0.896720i \(0.645943\pi\)
\(882\) 0 0
\(883\) − 3.49301e11i − 0.574589i −0.957842 0.287295i \(-0.907244\pi\)
0.957842 0.287295i \(-0.0927559\pi\)
\(884\) 0 0
\(885\) −2.37808e11 −0.387662
\(886\) 0 0
\(887\) 2.17981e11i 0.352148i 0.984377 + 0.176074i \(0.0563398\pi\)
−0.984377 + 0.176074i \(0.943660\pi\)
\(888\) 0 0
\(889\) 5.29532e11 0.847784
\(890\) 0 0
\(891\) 3.51866e10i 0.0558299i
\(892\) 0 0
\(893\) −1.36696e12 −2.14956
\(894\) 0 0
\(895\) − 3.23796e11i − 0.504637i
\(896\) 0 0
\(897\) −9.53348e10 −0.147259
\(898\) 0 0
\(899\) 9.83549e10i 0.150577i
\(900\) 0 0
\(901\) 5.55795e11 0.843365
\(902\) 0 0
\(903\) 2.67665e11i 0.402569i
\(904\) 0 0
\(905\) −2.22627e11 −0.331881
\(906\) 0 0
\(907\) − 6.26742e9i − 0.00926104i −0.999989 0.00463052i \(-0.998526\pi\)
0.999989 0.00463052i \(-0.00147395\pi\)
\(908\) 0 0
\(909\) 3.23975e11 0.474522
\(910\) 0 0
\(911\) − 6.22008e11i − 0.903073i −0.892253 0.451536i \(-0.850876\pi\)
0.892253 0.451536i \(-0.149124\pi\)
\(912\) 0 0
\(913\) 5.88972e10 0.0847640
\(914\) 0 0
\(915\) 2.94550e11i 0.420217i
\(916\) 0 0
\(917\) 1.14904e12 1.62501
\(918\) 0 0
\(919\) − 8.27760e11i − 1.16049i −0.814441 0.580246i \(-0.802956\pi\)
0.814441 0.580246i \(-0.197044\pi\)
\(920\) 0 0
\(921\) −3.09142e11 −0.429654
\(922\) 0 0
\(923\) − 8.53656e11i − 1.17619i
\(924\) 0 0
\(925\) −1.31383e11 −0.179463
\(926\) 0 0
\(927\) − 7.29708e11i − 0.988167i
\(928\) 0 0
\(929\) −6.50031e11 −0.872713 −0.436356 0.899774i \(-0.643731\pi\)
−0.436356 + 0.899774i \(0.643731\pi\)
\(930\) 0 0
\(931\) 2.82315e11i 0.375781i
\(932\) 0 0
\(933\) −4.31866e11 −0.569932
\(934\) 0 0
\(935\) 3.37646e10i 0.0441789i
\(936\) 0 0
\(937\) −6.60322e11 −0.856639 −0.428319 0.903627i \(-0.640894\pi\)
−0.428319 + 0.903627i \(0.640894\pi\)
\(938\) 0 0
\(939\) 1.89032e11i 0.243149i
\(940\) 0 0
\(941\) 2.13315e11 0.272059 0.136029 0.990705i \(-0.456566\pi\)
0.136029 + 0.990705i \(0.456566\pi\)
\(942\) 0 0
\(943\) − 4.39823e10i − 0.0556200i
\(944\) 0 0
\(945\) −3.38978e11 −0.425054
\(946\) 0 0
\(947\) 1.23955e10i 0.0154121i 0.999970 + 0.00770607i \(0.00245294\pi\)
−0.999970 + 0.00770607i \(0.997547\pi\)
\(948\) 0 0
\(949\) −1.03835e12 −1.28020
\(950\) 0 0
\(951\) − 2.17698e11i − 0.266154i
\(952\) 0 0
\(953\) −1.59801e12 −1.93734 −0.968672 0.248344i \(-0.920114\pi\)
−0.968672 + 0.248344i \(0.920114\pi\)
\(954\) 0 0
\(955\) 5.14980e11i 0.619122i
\(956\) 0 0
\(957\) 7.24029e10 0.0863193
\(958\) 0 0
\(959\) 1.18046e12i 1.39566i
\(960\) 0 0
\(961\) 8.34703e11 0.978674
\(962\) 0 0
\(963\) 1.20342e12i 1.39930i
\(964\) 0 0
\(965\) −6.54612e11 −0.754875
\(966\) 0 0
\(967\) 4.54304e11i 0.519566i 0.965667 + 0.259783i \(0.0836510\pi\)
−0.965667 + 0.259783i \(0.916349\pi\)
\(968\) 0 0
\(969\) 4.69307e11 0.532306
\(970\) 0 0
\(971\) 3.98175e11i 0.447917i 0.974599 + 0.223958i \(0.0718979\pi\)
−0.974599 + 0.223958i \(0.928102\pi\)
\(972\) 0 0
\(973\) −1.24782e12 −1.39219
\(974\) 0 0
\(975\) 1.29003e11i 0.142752i
\(976\) 0 0
\(977\) 1.61846e12 1.77633 0.888165 0.459525i \(-0.151980\pi\)
0.888165 + 0.459525i \(0.151980\pi\)
\(978\) 0 0
\(979\) 9.60806e10i 0.104594i
\(980\) 0 0
\(981\) 2.94607e11 0.318102
\(982\) 0 0
\(983\) 7.83368e10i 0.0838980i 0.999120 + 0.0419490i \(0.0133567\pi\)
−0.999120 + 0.0419490i \(0.986643\pi\)
\(984\) 0 0
\(985\) −5.20950e11 −0.553416
\(986\) 0 0
\(987\) − 5.95585e11i − 0.627589i
\(988\) 0 0
\(989\) −1.46858e11 −0.153502
\(990\) 0 0
\(991\) − 1.11925e12i − 1.16046i −0.814451 0.580232i \(-0.802962\pi\)
0.814451 0.580232i \(-0.197038\pi\)
\(992\) 0 0
\(993\) 3.45816e10 0.0355671
\(994\) 0 0
\(995\) − 5.08721e11i − 0.519023i
\(996\) 0 0
\(997\) 8.38483e11 0.848621 0.424311 0.905517i \(-0.360517\pi\)
0.424311 + 0.905517i \(0.360517\pi\)
\(998\) 0 0
\(999\) 7.74539e11i 0.777645i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 320.9.b.d.191.6 16
4.3 odd 2 inner 320.9.b.d.191.11 16
8.3 odd 2 20.9.b.a.11.8 yes 16
8.5 even 2 20.9.b.a.11.7 16
24.5 odd 2 180.9.c.a.91.10 16
24.11 even 2 180.9.c.a.91.9 16
40.3 even 4 100.9.d.c.99.32 32
40.13 odd 4 100.9.d.c.99.2 32
40.19 odd 2 100.9.b.d.51.9 16
40.27 even 4 100.9.d.c.99.1 32
40.29 even 2 100.9.b.d.51.10 16
40.37 odd 4 100.9.d.c.99.31 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.9.b.a.11.7 16 8.5 even 2
20.9.b.a.11.8 yes 16 8.3 odd 2
100.9.b.d.51.9 16 40.19 odd 2
100.9.b.d.51.10 16 40.29 even 2
100.9.d.c.99.1 32 40.27 even 4
100.9.d.c.99.2 32 40.13 odd 4
100.9.d.c.99.31 32 40.37 odd 4
100.9.d.c.99.32 32 40.3 even 4
180.9.c.a.91.9 16 24.11 even 2
180.9.c.a.91.10 16 24.5 odd 2
320.9.b.d.191.6 16 1.1 even 1 trivial
320.9.b.d.191.11 16 4.3 odd 2 inner