Properties

Label 2-320-4.3-c8-0-22
Degree $2$
Conductor $320$
Sign $1$
Analytic cond. $130.361$
Root an. cond. $11.4175$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 39.9i·3-s − 279.·5-s + 2.63e3i·7-s + 4.96e3·9-s + 2.48e3i·11-s − 4.13e4·13-s + 1.11e4i·15-s − 4.86e4·17-s − 2.41e5i·19-s + 1.05e5·21-s + 5.77e4i·23-s + 7.81e4·25-s − 4.60e5i·27-s + 7.29e5·29-s + 1.34e5i·31-s + ⋯
L(s)  = 1  − 0.493i·3-s − 0.447·5-s + 1.09i·7-s + 0.756·9-s + 0.169i·11-s − 1.44·13-s + 0.220i·15-s − 0.582·17-s − 1.85i·19-s + 0.541·21-s + 0.206i·23-s + 0.200·25-s − 0.866i·27-s + 1.03·29-s + 0.146i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(320\)    =    \(2^{6} \cdot 5\)
Sign: $1$
Analytic conductor: \(130.361\)
Root analytic conductor: \(11.4175\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{320} (191, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 320,\ (\ :4),\ 1)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(1.609825493\)
\(L(\frac12)\) \(\approx\) \(1.609825493\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + 279.T \)
good3 \( 1 + 39.9iT - 6.56e3T^{2} \)
7 \( 1 - 2.63e3iT - 5.76e6T^{2} \)
11 \( 1 - 2.48e3iT - 2.14e8T^{2} \)
13 \( 1 + 4.13e4T + 8.15e8T^{2} \)
17 \( 1 + 4.86e4T + 6.97e9T^{2} \)
19 \( 1 + 2.41e5iT - 1.69e10T^{2} \)
23 \( 1 - 5.77e4iT - 7.83e10T^{2} \)
29 \( 1 - 7.29e5T + 5.00e11T^{2} \)
31 \( 1 - 1.34e5iT - 8.52e11T^{2} \)
37 \( 1 + 1.68e6T + 3.51e12T^{2} \)
41 \( 1 + 7.61e5T + 7.98e12T^{2} \)
43 \( 1 - 2.54e6iT - 1.16e13T^{2} \)
47 \( 1 + 5.65e6iT - 2.38e13T^{2} \)
53 \( 1 + 1.14e7T + 6.22e13T^{2} \)
59 \( 1 - 2.12e7iT - 1.46e14T^{2} \)
61 \( 1 - 2.63e7T + 1.91e14T^{2} \)
67 \( 1 - 1.53e6iT - 4.06e14T^{2} \)
71 \( 1 - 2.06e7iT - 6.45e14T^{2} \)
73 \( 1 - 2.51e7T + 8.06e14T^{2} \)
79 \( 1 - 1.95e7iT - 1.51e15T^{2} \)
83 \( 1 + 2.37e7iT - 2.25e15T^{2} \)
89 \( 1 - 3.86e7T + 3.93e15T^{2} \)
97 \( 1 + 9.46e7T + 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.16094651368253610275281564265, −9.245642726571706982045199836008, −8.369954013821059205187321308676, −7.21574956827780320415189653703, −6.69597393762402199991311237881, −5.20488504873265484382791319977, −4.46125722745844851211477829169, −2.82427856455002818998936654881, −2.05458460165855255316308958355, −0.60023103892254110020782411565, 0.54197462719210102578812089203, 1.84098777931275019809027480953, 3.41350326282733103186608321715, 4.24573998579072494126257925287, 5.03051644924673803315331398421, 6.58477187083262833611332242567, 7.41848788223051536490447990226, 8.220670900964382214206803562331, 9.620143422891905039144558344977, 10.20429466715502135421327631378

Graph of the $Z$-function along the critical line