Properties

Label 2-180-4.3-c8-0-7
Degree $2$
Conductor $180$
Sign $-0.00639 - 0.999i$
Analytic cond. $73.3281$
Root an. cond. $8.56318$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−11.3 − 11.2i)2-s + (1.63 + 255. i)4-s + 279.·5-s − 3.94e3i·7-s + (2.86e3 − 2.92e3i)8-s + (−3.17e3 − 3.15e3i)10-s + 1.70e4i·11-s + 1.09e4·13-s + (−4.44e4 + 4.47e4i)14-s + (−6.55e4 + 837. i)16-s − 1.01e5·17-s + 9.34e4i·19-s + (457. + 7.15e4i)20-s + (1.92e5 − 1.94e5i)22-s − 1.47e5i·23-s + ⋯
L(s)  = 1  + (−0.709 − 0.704i)2-s + (0.00639 + 0.999i)4-s + 0.447·5-s − 1.64i·7-s + (0.700 − 0.713i)8-s + (−0.317 − 0.315i)10-s + 1.16i·11-s + 0.382·13-s + (−1.15 + 1.16i)14-s + (−0.999 + 0.0127i)16-s − 1.21·17-s + 0.716i·19-s + (0.00285 + 0.447i)20-s + (0.823 − 0.828i)22-s − 0.526i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.00639 - 0.999i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.00639 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(180\)    =    \(2^{2} \cdot 3^{2} \cdot 5\)
Sign: $-0.00639 - 0.999i$
Analytic conductor: \(73.3281\)
Root analytic conductor: \(8.56318\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{180} (91, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 180,\ (\ :4),\ -0.00639 - 0.999i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.3341353300\)
\(L(\frac12)\) \(\approx\) \(0.3341353300\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (11.3 + 11.2i)T \)
3 \( 1 \)
5 \( 1 - 279.T \)
good7 \( 1 + 3.94e3iT - 5.76e6T^{2} \)
11 \( 1 - 1.70e4iT - 2.14e8T^{2} \)
13 \( 1 - 1.09e4T + 8.15e8T^{2} \)
17 \( 1 + 1.01e5T + 6.97e9T^{2} \)
19 \( 1 - 9.34e4iT - 1.69e10T^{2} \)
23 \( 1 + 1.47e5iT - 7.83e10T^{2} \)
29 \( 1 + 4.16e4T + 5.00e11T^{2} \)
31 \( 1 + 1.38e5iT - 8.52e11T^{2} \)
37 \( 1 - 1.14e6T + 3.51e12T^{2} \)
41 \( 1 + 3.83e6T + 7.98e12T^{2} \)
43 \( 1 + 3.18e6iT - 1.16e13T^{2} \)
47 \( 1 + 3.51e6iT - 2.38e13T^{2} \)
53 \( 1 + 5.66e6T + 6.22e13T^{2} \)
59 \( 1 - 1.69e7iT - 1.46e14T^{2} \)
61 \( 1 + 5.16e6T + 1.91e14T^{2} \)
67 \( 1 + 1.05e7iT - 4.06e14T^{2} \)
71 \( 1 - 1.85e7iT - 6.45e14T^{2} \)
73 \( 1 - 2.38e6T + 8.06e14T^{2} \)
79 \( 1 - 4.42e7iT - 1.51e15T^{2} \)
83 \( 1 - 1.51e7iT - 2.25e15T^{2} \)
89 \( 1 - 5.42e7T + 3.93e15T^{2} \)
97 \( 1 + 1.24e8T + 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.10210863186753393544973083086, −10.35460226751896879916480858536, −9.721901508882891966224189437313, −8.517933511557002019733042748619, −7.38173323982006823345870805861, −6.64686125812723754121617609752, −4.59595325198290701200134984473, −3.75466591114392610434391364223, −2.18032572012826401310205747038, −1.15605057795735388167475883596, 0.10438401437496843259436218488, 1.65267599237229558584992408841, 2.82719348666686400889878285574, 4.93830521531777281282504151724, 5.90347288770767790162595891953, 6.55653798032813083003453036286, 8.148154879694937234800532247318, 8.888126556940968501772975696849, 9.485589092007435790418357303506, 10.91646816622167295688837457893

Graph of the $Z$-function along the critical line