Properties

Label 180.9.c.a.91.5
Level $180$
Weight $9$
Character 180.91
Analytic conductor $73.328$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [180,9,Mod(91,180)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(180, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("180.91"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 180.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(73.3281498110\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 15630052 x^{14} + 100431843210026 x^{12} + \cdots + 41\!\cdots\!25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{58}\cdot 3^{4}\cdot 5^{16} \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 91.5
Root \(-1970.29i\) of defining polynomial
Character \(\chi\) \(=\) 180.91
Dual form 180.9.c.a.91.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-11.3498 - 11.2775i) q^{2} +(1.63618 + 255.995i) q^{4} +279.508 q^{5} -3940.57i q^{7} +(2868.41 - 2923.94i) q^{8} +(-3172.37 - 3152.16i) q^{10} +17097.0i q^{11} +10938.7 q^{13} +(-44439.8 + 44724.8i) q^{14} +(-65530.6 + 837.705i) q^{16} -101666. q^{17} +93432.1i q^{19} +(457.325 + 71552.7i) q^{20} +(192811. - 194047. i) q^{22} -147346. i q^{23} +78125.0 q^{25} +(-124152. - 123361. i) q^{26} +(1.00877e6 - 6447.48i) q^{28} -41637.4 q^{29} -138577. i q^{31} +(753207. + 729514. i) q^{32} +(1.15389e6 + 1.14653e6i) q^{34} -1.10142e6i q^{35} +1.14978e6 q^{37} +(1.05368e6 - 1.06044e6i) q^{38} +(801745. - 817267. i) q^{40} -3.83906e6 q^{41} -3.18959e6i q^{43} +(-4.37673e6 + 27973.6i) q^{44} +(-1.66170e6 + 1.67235e6i) q^{46} -3.51218e6i q^{47} -9.76332e6 q^{49} +(-886704. - 881054. i) q^{50} +(17897.6 + 2.80024e6i) q^{52} -5.66612e6 q^{53} +4.77874e6i q^{55} +(-1.15220e7 - 1.13032e7i) q^{56} +(472576. + 469565. i) q^{58} +1.69068e7i q^{59} -5.16010e6 q^{61} +(-1.56280e6 + 1.57282e6i) q^{62} +(-321668. - 1.67741e7i) q^{64} +3.05745e6 q^{65} -1.05358e7i q^{67} +(-166343. - 2.60259e7i) q^{68} +(-1.24213e7 + 1.25009e7i) q^{70} +1.85971e7i q^{71} +2.38535e6 q^{73} +(-1.30498e7 - 1.29666e7i) q^{74} +(-2.39181e7 + 152871. i) q^{76} +6.73718e7 q^{77} +4.42560e7i q^{79} +(-1.83164e7 + 234146. i) q^{80} +(4.35726e7 + 4.32950e7i) q^{82} +1.51824e7i q^{83} -2.84164e7 q^{85} +(-3.59706e7 + 3.62013e7i) q^{86} +(4.99905e7 + 4.90411e7i) q^{88} +5.42739e7 q^{89} -4.31047e7i q^{91} +(3.77199e7 - 241085. i) q^{92} +(-3.96086e7 + 3.98625e7i) q^{94} +2.61151e7i q^{95} -1.24798e8 q^{97} +(1.10812e8 + 1.10106e8i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{2} - 52 q^{4} + 14184 q^{8} + 8750 q^{10} + 51392 q^{13} - 68472 q^{14} - 81424 q^{16} - 27552 q^{17} - 172500 q^{20} - 389120 q^{22} + 1250000 q^{25} - 1037124 q^{26} + 1288520 q^{28} - 2764896 q^{29}+ \cdots + 285387714 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/180\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(91\) \(101\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −11.3498 11.2775i −0.709363 0.704843i
\(3\) 0 0
\(4\) 1.63618 + 255.995i 0.00639132 + 0.999980i
\(5\) 279.508 0.447214
\(6\) 0 0
\(7\) 3940.57i 1.64122i −0.571487 0.820611i \(-0.693633\pi\)
0.571487 0.820611i \(-0.306367\pi\)
\(8\) 2868.41 2923.94i 0.700295 0.713853i
\(9\) 0 0
\(10\) −3172.37 3152.16i −0.317237 0.315216i
\(11\) 17097.0i 1.16775i 0.811845 + 0.583873i \(0.198463\pi\)
−0.811845 + 0.583873i \(0.801537\pi\)
\(12\) 0 0
\(13\) 10938.7 0.382994 0.191497 0.981493i \(-0.438666\pi\)
0.191497 + 0.981493i \(0.438666\pi\)
\(14\) −44439.8 + 44724.8i −1.15680 + 1.16422i
\(15\) 0 0
\(16\) −65530.6 + 837.705i −0.999918 + 0.0127824i
\(17\) −101666. −1.21725 −0.608624 0.793459i \(-0.708278\pi\)
−0.608624 + 0.793459i \(0.708278\pi\)
\(18\) 0 0
\(19\) 93432.1i 0.716938i 0.933542 + 0.358469i \(0.116701\pi\)
−0.933542 + 0.358469i \(0.883299\pi\)
\(20\) 457.325 + 71552.7i 0.00285828 + 0.447204i
\(21\) 0 0
\(22\) 192811. 194047.i 0.823078 0.828355i
\(23\) 147346.i 0.526536i −0.964723 0.263268i \(-0.915200\pi\)
0.964723 0.263268i \(-0.0848003\pi\)
\(24\) 0 0
\(25\) 78125.0 0.200000
\(26\) −124152. 123361.i −0.271681 0.269951i
\(27\) 0 0
\(28\) 1.00877e6 6447.48i 1.64119 0.0104896i
\(29\) −41637.4 −0.0588696 −0.0294348 0.999567i \(-0.509371\pi\)
−0.0294348 + 0.999567i \(0.509371\pi\)
\(30\) 0 0
\(31\) 138577.i 0.150052i −0.997182 0.0750262i \(-0.976096\pi\)
0.997182 0.0750262i \(-0.0239040\pi\)
\(32\) 753207. + 729514.i 0.718314 + 0.695719i
\(33\) 0 0
\(34\) 1.15389e6 + 1.14653e6i 0.863470 + 0.857969i
\(35\) 1.10142e6i 0.733977i
\(36\) 0 0
\(37\) 1.14978e6 0.613489 0.306745 0.951792i \(-0.400760\pi\)
0.306745 + 0.951792i \(0.400760\pi\)
\(38\) 1.05368e6 1.06044e6i 0.505329 0.508569i
\(39\) 0 0
\(40\) 801745. 817267.i 0.313182 0.319245i
\(41\) −3.83906e6 −1.35859 −0.679297 0.733864i \(-0.737715\pi\)
−0.679297 + 0.733864i \(0.737715\pi\)
\(42\) 0 0
\(43\) 3.18959e6i 0.932956i −0.884533 0.466478i \(-0.845523\pi\)
0.884533 0.466478i \(-0.154477\pi\)
\(44\) −4.37673e6 + 27973.6i −1.16772 + 0.00746343i
\(45\) 0 0
\(46\) −1.66170e6 + 1.67235e6i −0.371125 + 0.373505i
\(47\) 3.51218e6i 0.719756i −0.932999 0.359878i \(-0.882818\pi\)
0.932999 0.359878i \(-0.117182\pi\)
\(48\) 0 0
\(49\) −9.76332e6 −1.69361
\(50\) −886704. 881054.i −0.141873 0.140969i
\(51\) 0 0
\(52\) 17897.6 + 2.80024e6i 0.00244783 + 0.382986i
\(53\) −5.66612e6 −0.718096 −0.359048 0.933319i \(-0.616899\pi\)
−0.359048 + 0.933319i \(0.616899\pi\)
\(54\) 0 0
\(55\) 4.77874e6i 0.522231i
\(56\) −1.15220e7 1.13032e7i −1.17159 1.14934i
\(57\) 0 0
\(58\) 472576. + 469565.i 0.0417599 + 0.0414939i
\(59\) 1.69068e7i 1.39525i 0.716461 + 0.697627i \(0.245761\pi\)
−0.716461 + 0.697627i \(0.754239\pi\)
\(60\) 0 0
\(61\) −5.16010e6 −0.372682 −0.186341 0.982485i \(-0.559663\pi\)
−0.186341 + 0.982485i \(0.559663\pi\)
\(62\) −1.56280e6 + 1.57282e6i −0.105763 + 0.106442i
\(63\) 0 0
\(64\) −321668. 1.67741e7i −0.0191729 0.999816i
\(65\) 3.05745e6 0.171280
\(66\) 0 0
\(67\) 1.05358e7i 0.522838i −0.965225 0.261419i \(-0.915810\pi\)
0.965225 0.261419i \(-0.0841904\pi\)
\(68\) −166343. 2.60259e7i −0.00777981 1.21722i
\(69\) 0 0
\(70\) −1.24213e7 + 1.25009e7i −0.517339 + 0.520656i
\(71\) 1.85971e7i 0.731833i 0.930648 + 0.365916i \(0.119244\pi\)
−0.930648 + 0.365916i \(0.880756\pi\)
\(72\) 0 0
\(73\) 2.38535e6 0.0839964 0.0419982 0.999118i \(-0.486628\pi\)
0.0419982 + 0.999118i \(0.486628\pi\)
\(74\) −1.30498e7 1.29666e7i −0.435186 0.432414i
\(75\) 0 0
\(76\) −2.39181e7 + 152871.i −0.716923 + 0.00458218i
\(77\) 6.73718e7 1.91653
\(78\) 0 0
\(79\) 4.42560e7i 1.13622i 0.822951 + 0.568112i \(0.192326\pi\)
−0.822951 + 0.568112i \(0.807674\pi\)
\(80\) −1.83164e7 + 234146.i −0.447177 + 0.00571645i
\(81\) 0 0
\(82\) 4.35726e7 + 4.32950e7i 0.963736 + 0.957596i
\(83\) 1.51824e7i 0.319910i 0.987124 + 0.159955i \(0.0511349\pi\)
−0.987124 + 0.159955i \(0.948865\pi\)
\(84\) 0 0
\(85\) −2.84164e7 −0.544369
\(86\) −3.59706e7 + 3.62013e7i −0.657588 + 0.661805i
\(87\) 0 0
\(88\) 4.99905e7 + 4.90411e7i 0.833599 + 0.817766i
\(89\) 5.42739e7 0.865030 0.432515 0.901627i \(-0.357626\pi\)
0.432515 + 0.901627i \(0.357626\pi\)
\(90\) 0 0
\(91\) 4.31047e7i 0.628577i
\(92\) 3.77199e7 241085.i 0.526525 0.00336526i
\(93\) 0 0
\(94\) −3.96086e7 + 3.98625e7i −0.507315 + 0.510568i
\(95\) 2.61151e7i 0.320624i
\(96\) 0 0
\(97\) −1.24798e8 −1.40968 −0.704841 0.709365i \(-0.748982\pi\)
−0.704841 + 0.709365i \(0.748982\pi\)
\(98\) 1.10812e8 + 1.10106e8i 1.20138 + 1.19373i
\(99\) 0 0
\(100\) 127826. + 1.99996e7i 0.00127826 + 0.199996i
\(101\) −1.96354e8 −1.88693 −0.943463 0.331478i \(-0.892453\pi\)
−0.943463 + 0.331478i \(0.892453\pi\)
\(102\) 0 0
\(103\) 1.08404e8i 0.963152i 0.876404 + 0.481576i \(0.159935\pi\)
−0.876404 + 0.481576i \(0.840065\pi\)
\(104\) 3.13766e7 3.19841e7i 0.268209 0.273401i
\(105\) 0 0
\(106\) 6.43094e7 + 6.38996e7i 0.509390 + 0.506145i
\(107\) 5.19293e7i 0.396166i −0.980185 0.198083i \(-0.936528\pi\)
0.980185 0.198083i \(-0.0634715\pi\)
\(108\) 0 0
\(109\) 2.01131e8 1.42486 0.712432 0.701741i \(-0.247594\pi\)
0.712432 + 0.701741i \(0.247594\pi\)
\(110\) 5.38923e7 5.42378e7i 0.368091 0.370452i
\(111\) 0 0
\(112\) 3.30104e6 + 2.58228e8i 0.0209787 + 1.64109i
\(113\) 6.82663e7 0.418690 0.209345 0.977842i \(-0.432867\pi\)
0.209345 + 0.977842i \(0.432867\pi\)
\(114\) 0 0
\(115\) 4.11845e7i 0.235474i
\(116\) −68126.1 1.06590e7i −0.000376254 0.0588684i
\(117\) 0 0
\(118\) 1.90666e8 1.91889e8i 0.983435 0.989741i
\(119\) 4.00621e8i 1.99777i
\(120\) 0 0
\(121\) −7.79470e7 −0.363629
\(122\) 5.85661e7 + 5.81930e7i 0.264367 + 0.262683i
\(123\) 0 0
\(124\) 3.54749e7 226736.i 0.150049 0.000959032i
\(125\) 2.18366e7 0.0894427
\(126\) 0 0
\(127\) 3.48984e8i 1.34150i 0.741683 + 0.670751i \(0.234028\pi\)
−0.741683 + 0.670751i \(0.765972\pi\)
\(128\) −1.85519e8 + 1.94011e8i −0.691113 + 0.722746i
\(129\) 0 0
\(130\) −3.47015e7 3.44804e7i −0.121500 0.120726i
\(131\) 1.49192e8i 0.506596i 0.967388 + 0.253298i \(0.0815153\pi\)
−0.967388 + 0.253298i \(0.918485\pi\)
\(132\) 0 0
\(133\) 3.68176e8 1.17665
\(134\) −1.18817e8 + 1.19579e8i −0.368519 + 0.370882i
\(135\) 0 0
\(136\) −2.91619e8 + 2.97265e8i −0.852433 + 0.868936i
\(137\) −6.05661e8 −1.71928 −0.859642 0.510897i \(-0.829313\pi\)
−0.859642 + 0.510897i \(0.829313\pi\)
\(138\) 0 0
\(139\) 5.19290e8i 1.39107i 0.718490 + 0.695537i \(0.244834\pi\)
−0.718490 + 0.695537i \(0.755166\pi\)
\(140\) 2.81959e8 1.80212e6i 0.733962 0.00469108i
\(141\) 0 0
\(142\) 2.09729e8 2.11074e8i 0.515828 0.519135i
\(143\) 1.87018e8i 0.447239i
\(144\) 0 0
\(145\) −1.16380e7 −0.0263273
\(146\) −2.70732e7 2.69008e7i −0.0595839 0.0592043i
\(147\) 0 0
\(148\) 1.88124e6 + 2.94337e8i 0.00392100 + 0.613477i
\(149\) 6.13964e8 1.24565 0.622827 0.782359i \(-0.285984\pi\)
0.622827 + 0.782359i \(0.285984\pi\)
\(150\) 0 0
\(151\) 5.41162e8i 1.04093i 0.853884 + 0.520463i \(0.174241\pi\)
−0.853884 + 0.520463i \(0.825759\pi\)
\(152\) 2.73190e8 + 2.68001e8i 0.511788 + 0.502068i
\(153\) 0 0
\(154\) −7.64657e8 7.59785e8i −1.35951 1.35085i
\(155\) 3.87333e7i 0.0671055i
\(156\) 0 0
\(157\) −6.43982e8 −1.05993 −0.529963 0.848021i \(-0.677794\pi\)
−0.529963 + 0.848021i \(0.677794\pi\)
\(158\) 4.99097e8 5.02297e8i 0.800860 0.805995i
\(159\) 0 0
\(160\) 2.10528e8 + 2.03905e8i 0.321240 + 0.311135i
\(161\) −5.80629e8 −0.864162
\(162\) 0 0
\(163\) 6.74607e8i 0.955653i 0.878454 + 0.477826i \(0.158575\pi\)
−0.878454 + 0.477826i \(0.841425\pi\)
\(164\) −6.28138e6 9.82780e8i −0.00868320 1.35857i
\(165\) 0 0
\(166\) 1.71219e8 1.72317e8i 0.225486 0.226932i
\(167\) 4.55554e8i 0.585699i 0.956159 + 0.292849i \(0.0946035\pi\)
−0.956159 + 0.292849i \(0.905397\pi\)
\(168\) 0 0
\(169\) −6.96076e8 −0.853316
\(170\) 3.22521e8 + 3.20466e8i 0.386155 + 0.383695i
\(171\) 0 0
\(172\) 8.16519e8 5.21874e6i 0.932937 0.00596282i
\(173\) −9.64344e8 −1.07658 −0.538292 0.842759i \(-0.680930\pi\)
−0.538292 + 0.842759i \(0.680930\pi\)
\(174\) 0 0
\(175\) 3.07857e8i 0.328244i
\(176\) −1.43222e7 1.12037e9i −0.0149265 1.16765i
\(177\) 0 0
\(178\) −6.15998e8 6.12074e8i −0.613620 0.609711i
\(179\) 1.01365e9i 0.987363i −0.869643 0.493682i \(-0.835651\pi\)
0.869643 0.493682i \(-0.164349\pi\)
\(180\) 0 0
\(181\) 1.51507e8 0.141162 0.0705812 0.997506i \(-0.477515\pi\)
0.0705812 + 0.997506i \(0.477515\pi\)
\(182\) −4.86113e8 + 4.89230e8i −0.443049 + 0.445889i
\(183\) 0 0
\(184\) −4.30832e8 4.22649e8i −0.375869 0.368730i
\(185\) 3.21373e8 0.274361
\(186\) 0 0
\(187\) 1.73817e9i 1.42143i
\(188\) 8.99099e8 5.74654e6i 0.719741 0.00460019i
\(189\) 0 0
\(190\) 2.94512e8 2.96401e8i 0.225990 0.227439i
\(191\) 5.46186e8i 0.410399i 0.978720 + 0.205200i \(0.0657844\pi\)
−0.978720 + 0.205200i \(0.934216\pi\)
\(192\) 0 0
\(193\) 1.52005e9 1.09554 0.547771 0.836628i \(-0.315477\pi\)
0.547771 + 0.836628i \(0.315477\pi\)
\(194\) 1.41643e9 + 1.40741e9i 0.999976 + 0.993605i
\(195\) 0 0
\(196\) −1.59745e7 2.49936e9i −0.0108244 1.69358i
\(197\) −1.98770e9 −1.31974 −0.659868 0.751382i \(-0.729388\pi\)
−0.659868 + 0.751382i \(0.729388\pi\)
\(198\) 0 0
\(199\) 1.68735e9i 1.07595i 0.842960 + 0.537976i \(0.180811\pi\)
−0.842960 + 0.537976i \(0.819189\pi\)
\(200\) 2.24095e8 2.28433e8i 0.140059 0.142771i
\(201\) 0 0
\(202\) 2.22858e9 + 2.21438e9i 1.33852 + 1.32999i
\(203\) 1.64075e8i 0.0966182i
\(204\) 0 0
\(205\) −1.07305e9 −0.607582
\(206\) 1.22252e9 1.23036e9i 0.678872 0.683224i
\(207\) 0 0
\(208\) −7.16819e8 + 9.16339e6i −0.382962 + 0.00489556i
\(209\) −1.59740e9 −0.837201
\(210\) 0 0
\(211\) 3.55239e9i 1.79222i −0.443834 0.896109i \(-0.646382\pi\)
0.443834 0.896109i \(-0.353618\pi\)
\(212\) −9.27077e6 1.45050e9i −0.00458958 0.718081i
\(213\) 0 0
\(214\) −5.85632e8 + 5.89387e8i −0.279235 + 0.281025i
\(215\) 8.91518e8i 0.417231i
\(216\) 0 0
\(217\) −5.46071e8 −0.246269
\(218\) −2.28280e9 2.26826e9i −1.01075 1.00431i
\(219\) 0 0
\(220\) −1.22333e9 + 7.81887e6i −0.522221 + 0.00333775i
\(221\) −1.11209e9 −0.466198
\(222\) 0 0
\(223\) 1.41187e9i 0.570920i 0.958391 + 0.285460i \(0.0921465\pi\)
−0.958391 + 0.285460i \(0.907854\pi\)
\(224\) 2.87470e9 2.96807e9i 1.14183 1.17891i
\(225\) 0 0
\(226\) −7.74809e8 7.69873e8i −0.297003 0.295111i
\(227\) 1.08981e9i 0.410438i 0.978716 + 0.205219i \(0.0657906\pi\)
−0.978716 + 0.205219i \(0.934209\pi\)
\(228\) 0 0
\(229\) −2.25807e9 −0.821097 −0.410549 0.911839i \(-0.634663\pi\)
−0.410549 + 0.911839i \(0.634663\pi\)
\(230\) −4.64458e8 + 4.67436e8i −0.165972 + 0.167036i
\(231\) 0 0
\(232\) −1.19433e8 + 1.21745e8i −0.0412261 + 0.0420243i
\(233\) −6.52483e8 −0.221384 −0.110692 0.993855i \(-0.535307\pi\)
−0.110692 + 0.993855i \(0.535307\pi\)
\(234\) 0 0
\(235\) 9.81684e8i 0.321885i
\(236\) −4.32805e9 + 2.76625e7i −1.39522 + 0.00891750i
\(237\) 0 0
\(238\) 4.51800e9 4.54697e9i 1.40812 1.41715i
\(239\) 4.79300e9i 1.46898i 0.678619 + 0.734490i \(0.262579\pi\)
−0.678619 + 0.734490i \(0.737421\pi\)
\(240\) 0 0
\(241\) −5.18381e9 −1.53667 −0.768335 0.640048i \(-0.778915\pi\)
−0.768335 + 0.640048i \(0.778915\pi\)
\(242\) 8.84683e8 + 8.79047e8i 0.257945 + 0.256301i
\(243\) 0 0
\(244\) −8.44283e6 1.32096e9i −0.00238193 0.372675i
\(245\) −2.72893e9 −0.757405
\(246\) 0 0
\(247\) 1.02202e9i 0.274583i
\(248\) −4.05190e8 3.97494e8i −0.107115 0.105081i
\(249\) 0 0
\(250\) −2.47841e8 2.46262e8i −0.0634473 0.0630431i
\(251\) 2.41878e9i 0.609398i 0.952449 + 0.304699i \(0.0985558\pi\)
−0.952449 + 0.304699i \(0.901444\pi\)
\(252\) 0 0
\(253\) 2.51917e9 0.614859
\(254\) 3.93567e9 3.96090e9i 0.945548 0.951611i
\(255\) 0 0
\(256\) 4.29356e9 1.09791e8i 0.999673 0.0255627i
\(257\) 5.25554e9 1.20472 0.602358 0.798226i \(-0.294228\pi\)
0.602358 + 0.798226i \(0.294228\pi\)
\(258\) 0 0
\(259\) 4.53078e9i 1.00687i
\(260\) 5.00253e6 + 7.82692e8i 0.00109470 + 0.171276i
\(261\) 0 0
\(262\) 1.68252e9 1.69331e9i 0.357071 0.359360i
\(263\) 1.24951e9i 0.261165i 0.991437 + 0.130583i \(0.0416848\pi\)
−0.991437 + 0.130583i \(0.958315\pi\)
\(264\) 0 0
\(265\) −1.58373e9 −0.321142
\(266\) −4.17873e9 4.15210e9i −0.834675 0.829357i
\(267\) 0 0
\(268\) 2.69710e9 1.72384e7i 0.522827 0.00334162i
\(269\) 5.36357e9 1.02434 0.512171 0.858884i \(-0.328841\pi\)
0.512171 + 0.858884i \(0.328841\pi\)
\(270\) 0 0
\(271\) 6.72329e8i 0.124654i 0.998056 + 0.0623268i \(0.0198521\pi\)
−0.998056 + 0.0623268i \(0.980148\pi\)
\(272\) 6.66222e9 8.51659e7i 1.21715 0.0155593i
\(273\) 0 0
\(274\) 6.87414e9 + 6.83034e9i 1.21960 + 1.21183i
\(275\) 1.33570e9i 0.233549i
\(276\) 0 0
\(277\) 8.55117e9 1.45247 0.726234 0.687448i \(-0.241269\pi\)
0.726234 + 0.687448i \(0.241269\pi\)
\(278\) 5.85629e9 5.89384e9i 0.980490 0.986777i
\(279\) 0 0
\(280\) −3.22050e9 3.15934e9i −0.523952 0.514001i
\(281\) 8.47677e8 0.135958 0.0679791 0.997687i \(-0.478345\pi\)
0.0679791 + 0.997687i \(0.478345\pi\)
\(282\) 0 0
\(283\) 2.59848e9i 0.405111i −0.979271 0.202555i \(-0.935075\pi\)
0.979271 0.202555i \(-0.0649246\pi\)
\(284\) −4.76076e9 + 3.04282e7i −0.731818 + 0.00467738i
\(285\) 0 0
\(286\) 2.10910e9 2.12262e9i 0.315233 0.317255i
\(287\) 1.51281e10i 2.22975i
\(288\) 0 0
\(289\) 3.36016e9 0.481691
\(290\) 1.32089e8 + 1.31248e8i 0.0186756 + 0.0185566i
\(291\) 0 0
\(292\) 3.90285e6 + 6.10637e8i 0.000536847 + 0.0839946i
\(293\) −1.18893e10 −1.61319 −0.806594 0.591107i \(-0.798691\pi\)
−0.806594 + 0.591107i \(0.798691\pi\)
\(294\) 0 0
\(295\) 4.72559e9i 0.623976i
\(296\) 3.29803e9 3.36188e9i 0.429624 0.437941i
\(297\) 0 0
\(298\) −6.96837e9 6.92397e9i −0.883621 0.877992i
\(299\) 1.61177e9i 0.201660i
\(300\) 0 0
\(301\) −1.25688e10 −1.53119
\(302\) 6.10296e9 6.14209e9i 0.733690 0.738394i
\(303\) 0 0
\(304\) −7.82685e7 6.12266e9i −0.00916417 0.716879i
\(305\) −1.44229e9 −0.166669
\(306\) 0 0
\(307\) 1.74109e10i 1.96005i 0.198868 + 0.980026i \(0.436273\pi\)
−0.198868 + 0.980026i \(0.563727\pi\)
\(308\) 1.10232e8 + 1.72468e10i 0.0122491 + 1.91649i
\(309\) 0 0
\(310\) −4.36815e8 + 4.39616e8i −0.0472989 + 0.0476021i
\(311\) 8.61717e9i 0.921135i −0.887625 0.460567i \(-0.847646\pi\)
0.887625 0.460567i \(-0.152354\pi\)
\(312\) 0 0
\(313\) −9.76978e9 −1.01791 −0.508953 0.860794i \(-0.669967\pi\)
−0.508953 + 0.860794i \(0.669967\pi\)
\(314\) 7.30907e9 + 7.26250e9i 0.751871 + 0.747081i
\(315\) 0 0
\(316\) −1.13293e10 + 7.24107e7i −1.13620 + 0.00726197i
\(317\) 6.57561e9 0.651177 0.325589 0.945512i \(-0.394438\pi\)
0.325589 + 0.945512i \(0.394438\pi\)
\(318\) 0 0
\(319\) 7.11872e8i 0.0687447i
\(320\) −8.99089e7 4.68851e9i −0.00857438 0.447131i
\(321\) 0 0
\(322\) 6.59002e9 + 6.54804e9i 0.613004 + 0.609099i
\(323\) 9.49884e9i 0.872691i
\(324\) 0 0
\(325\) 8.54584e8 0.0765987
\(326\) 7.60787e9 7.65665e9i 0.673586 0.677905i
\(327\) 0 0
\(328\) −1.10120e10 + 1.12252e10i −0.951417 + 0.969837i
\(329\) −1.38400e10 −1.18128
\(330\) 0 0
\(331\) 2.32794e10i 1.93936i −0.244370 0.969682i \(-0.578581\pi\)
0.244370 0.969682i \(-0.421419\pi\)
\(332\) −3.88661e9 + 2.48411e7i −0.319903 + 0.00204464i
\(333\) 0 0
\(334\) 5.13751e9 5.17045e9i 0.412826 0.415473i
\(335\) 2.94484e9i 0.233820i
\(336\) 0 0
\(337\) −1.99301e9 −0.154522 −0.0772610 0.997011i \(-0.524617\pi\)
−0.0772610 + 0.997011i \(0.524617\pi\)
\(338\) 7.90033e9 + 7.84999e9i 0.605311 + 0.601454i
\(339\) 0 0
\(340\) −4.64943e7 7.27446e9i −0.00347924 0.544358i
\(341\) 2.36924e9 0.175223
\(342\) 0 0
\(343\) 1.57565e10i 1.13837i
\(344\) −9.32619e9 9.14906e9i −0.665994 0.653345i
\(345\) 0 0
\(346\) 1.09451e10 + 1.08754e10i 0.763688 + 0.758823i
\(347\) 6.31855e9i 0.435813i 0.975970 + 0.217906i \(0.0699227\pi\)
−0.975970 + 0.217906i \(0.930077\pi\)
\(348\) 0 0
\(349\) −1.87010e9 −0.126056 −0.0630279 0.998012i \(-0.520076\pi\)
−0.0630279 + 0.998012i \(0.520076\pi\)
\(350\) −3.47186e9 + 3.49412e9i −0.231361 + 0.232844i
\(351\) 0 0
\(352\) −1.24725e10 + 1.28776e10i −0.812422 + 0.838808i
\(353\) −3.02132e10 −1.94580 −0.972900 0.231225i \(-0.925727\pi\)
−0.972900 + 0.231225i \(0.925727\pi\)
\(354\) 0 0
\(355\) 5.19805e9i 0.327286i
\(356\) 8.88017e7 + 1.38938e10i 0.00552868 + 0.865012i
\(357\) 0 0
\(358\) −1.14315e10 + 1.15048e10i −0.695937 + 0.700399i
\(359\) 1.82078e10i 1.09618i −0.836421 0.548088i \(-0.815356\pi\)
0.836421 0.548088i \(-0.184644\pi\)
\(360\) 0 0
\(361\) 8.25401e9 0.486000
\(362\) −1.71958e9 1.70862e9i −0.100135 0.0994974i
\(363\) 0 0
\(364\) 1.10346e10 7.05269e7i 0.628565 0.00401744i
\(365\) 6.66725e8 0.0375643
\(366\) 0 0
\(367\) 1.46648e10i 0.808372i 0.914677 + 0.404186i \(0.132445\pi\)
−0.914677 + 0.404186i \(0.867555\pi\)
\(368\) 1.23433e8 + 9.65570e9i 0.00673037 + 0.526493i
\(369\) 0 0
\(370\) −3.64752e9 3.62428e9i −0.194621 0.193381i
\(371\) 2.23278e10i 1.17855i
\(372\) 0 0
\(373\) 1.41277e10 0.729857 0.364928 0.931036i \(-0.381094\pi\)
0.364928 + 0.931036i \(0.381094\pi\)
\(374\) −1.96022e10 + 1.97279e10i −1.00189 + 1.00831i
\(375\) 0 0
\(376\) −1.02694e10 1.00744e10i −0.513800 0.504042i
\(377\) −4.55458e8 −0.0225467
\(378\) 0 0
\(379\) 3.94069e9i 0.190992i 0.995430 + 0.0954960i \(0.0304437\pi\)
−0.995430 + 0.0954960i \(0.969556\pi\)
\(380\) −6.68532e9 + 4.27288e7i −0.320618 + 0.00204921i
\(381\) 0 0
\(382\) 6.15961e9 6.19910e9i 0.289267 0.291122i
\(383\) 3.43063e10i 1.59433i −0.603760 0.797166i \(-0.706332\pi\)
0.603760 0.797166i \(-0.293668\pi\)
\(384\) 0 0
\(385\) 1.88310e10 0.857098
\(386\) −1.72523e10 1.71424e10i −0.777137 0.772185i
\(387\) 0 0
\(388\) −2.04192e8 3.19477e10i −0.00900972 1.40965i
\(389\) −4.14309e8 −0.0180936 −0.00904681 0.999959i \(-0.502880\pi\)
−0.00904681 + 0.999959i \(0.502880\pi\)
\(390\) 0 0
\(391\) 1.49801e10i 0.640924i
\(392\) −2.80052e10 + 2.85474e10i −1.18603 + 1.20899i
\(393\) 0 0
\(394\) 2.25601e10 + 2.24163e10i 0.936171 + 0.930207i
\(395\) 1.23699e10i 0.508135i
\(396\) 0 0
\(397\) 2.25453e10 0.907598 0.453799 0.891104i \(-0.350068\pi\)
0.453799 + 0.891104i \(0.350068\pi\)
\(398\) 1.90291e10 1.91511e10i 0.758377 0.763240i
\(399\) 0 0
\(400\) −5.11958e9 + 6.54457e7i −0.199984 + 0.00255647i
\(401\) 2.53666e10 0.981037 0.490519 0.871431i \(-0.336807\pi\)
0.490519 + 0.871431i \(0.336807\pi\)
\(402\) 0 0
\(403\) 1.51584e9i 0.0574691i
\(404\) −3.21270e8 5.02657e10i −0.0120599 1.88689i
\(405\) 0 0
\(406\) 1.85036e9 1.86222e9i 0.0681007 0.0685373i
\(407\) 1.96577e10i 0.716399i
\(408\) 0 0
\(409\) 1.47057e10 0.525523 0.262761 0.964861i \(-0.415367\pi\)
0.262761 + 0.964861i \(0.415367\pi\)
\(410\) 1.21789e10 + 1.21013e10i 0.430996 + 0.428250i
\(411\) 0 0
\(412\) −2.77508e10 + 1.77367e8i −0.963132 + 0.00615581i
\(413\) 6.66225e10 2.28992
\(414\) 0 0
\(415\) 4.24361e9i 0.143068i
\(416\) 8.23909e9 + 7.97992e9i 0.275110 + 0.266456i
\(417\) 0 0
\(418\) 1.81302e10 + 1.80147e10i 0.593879 + 0.590095i
\(419\) 7.30915e9i 0.237143i 0.992946 + 0.118572i \(0.0378315\pi\)
−0.992946 + 0.118572i \(0.962168\pi\)
\(420\) 0 0
\(421\) −4.09140e10 −1.30240 −0.651199 0.758907i \(-0.725734\pi\)
−0.651199 + 0.758907i \(0.725734\pi\)
\(422\) −4.00621e10 + 4.03189e10i −1.26323 + 1.27133i
\(423\) 0 0
\(424\) −1.62528e10 + 1.65674e10i −0.502879 + 0.512615i
\(425\) −7.94263e9 −0.243449
\(426\) 0 0
\(427\) 2.03337e10i 0.611654i
\(428\) 1.32936e10 8.49655e7i 0.396158 0.00253202i
\(429\) 0 0
\(430\) −1.00541e10 + 1.01186e10i −0.294082 + 0.295968i
\(431\) 3.95128e9i 0.114506i −0.998360 0.0572531i \(-0.981766\pi\)
0.998360 0.0572531i \(-0.0182342\pi\)
\(432\) 0 0
\(433\) 2.88725e10 0.821358 0.410679 0.911780i \(-0.365292\pi\)
0.410679 + 0.911780i \(0.365292\pi\)
\(434\) 6.19780e9 + 6.15831e9i 0.174694 + 0.173581i
\(435\) 0 0
\(436\) 3.29086e8 + 5.14885e10i 0.00910676 + 1.42484i
\(437\) 1.37669e10 0.377493
\(438\) 0 0
\(439\) 1.66340e10i 0.447857i −0.974606 0.223929i \(-0.928112\pi\)
0.974606 0.223929i \(-0.0718883\pi\)
\(440\) 1.39728e10 + 1.37074e10i 0.372797 + 0.365716i
\(441\) 0 0
\(442\) 1.26220e10 + 1.25416e10i 0.330703 + 0.328596i
\(443\) 1.61256e10i 0.418699i −0.977841 0.209350i \(-0.932865\pi\)
0.977841 0.209350i \(-0.0671346\pi\)
\(444\) 0 0
\(445\) 1.51700e10 0.386853
\(446\) 1.59224e10 1.60245e10i 0.402410 0.404990i
\(447\) 0 0
\(448\) −6.60997e10 + 1.26756e9i −1.64092 + 0.0314670i
\(449\) −1.31471e10 −0.323478 −0.161739 0.986834i \(-0.551710\pi\)
−0.161739 + 0.986834i \(0.551710\pi\)
\(450\) 0 0
\(451\) 6.56363e10i 1.58649i
\(452\) 1.11696e8 + 1.74758e10i 0.00267598 + 0.418682i
\(453\) 0 0
\(454\) 1.22903e10 1.23691e10i 0.289294 0.291149i
\(455\) 1.20481e10i 0.281108i
\(456\) 0 0
\(457\) −6.79985e10 −1.55896 −0.779480 0.626427i \(-0.784516\pi\)
−0.779480 + 0.626427i \(0.784516\pi\)
\(458\) 2.56286e10 + 2.54653e10i 0.582456 + 0.578745i
\(459\) 0 0
\(460\) 1.05430e10 6.73852e7i 0.235469 0.00150499i
\(461\) 2.86783e10 0.634966 0.317483 0.948264i \(-0.397162\pi\)
0.317483 + 0.948264i \(0.397162\pi\)
\(462\) 0 0
\(463\) 4.22729e9i 0.0919894i 0.998942 + 0.0459947i \(0.0146457\pi\)
−0.998942 + 0.0459947i \(0.985354\pi\)
\(464\) 2.72852e9 3.48799e7i 0.0588648 0.000752494i
\(465\) 0 0
\(466\) 7.40556e9 + 7.35838e9i 0.157041 + 0.156041i
\(467\) 4.27269e10i 0.898325i 0.893450 + 0.449163i \(0.148278\pi\)
−0.893450 + 0.449163i \(0.851722\pi\)
\(468\) 0 0
\(469\) −4.15170e10 −0.858093
\(470\) −1.10709e10 + 1.11419e10i −0.226878 + 0.228333i
\(471\) 0 0
\(472\) 4.94345e10 + 4.84956e10i 0.996006 + 0.977089i
\(473\) 5.45323e10 1.08946
\(474\) 0 0
\(475\) 7.29938e9i 0.143388i
\(476\) −1.02557e11 + 6.55487e8i −1.99773 + 0.0127684i
\(477\) 0 0
\(478\) 5.40531e10 5.43996e10i 1.03540 1.04204i
\(479\) 6.73017e10i 1.27845i −0.769020 0.639225i \(-0.779255\pi\)
0.769020 0.639225i \(-0.220745\pi\)
\(480\) 0 0
\(481\) 1.25770e10 0.234962
\(482\) 5.88352e10 + 5.84604e10i 1.09006 + 1.08311i
\(483\) 0 0
\(484\) −1.27535e8 1.99540e10i −0.00232406 0.363621i
\(485\) −3.48821e10 −0.630429
\(486\) 0 0
\(487\) 9.69928e10i 1.72434i −0.506616 0.862172i \(-0.669104\pi\)
0.506616 0.862172i \(-0.330896\pi\)
\(488\) −1.48013e10 + 1.50878e10i −0.260988 + 0.266040i
\(489\) 0 0
\(490\) 3.09728e10 + 3.07755e10i 0.537275 + 0.533852i
\(491\) 1.73575e10i 0.298648i −0.988788 0.149324i \(-0.952290\pi\)
0.988788 0.149324i \(-0.0477098\pi\)
\(492\) 0 0
\(493\) 4.23309e9 0.0716589
\(494\) 1.15259e10 1.15998e10i 0.193538 0.194779i
\(495\) 0 0
\(496\) 1.16086e8 + 9.08101e9i 0.00191803 + 0.150040i
\(497\) 7.32833e10 1.20110
\(498\) 0 0
\(499\) 1.42959e10i 0.230573i −0.993332 0.115287i \(-0.963221\pi\)
0.993332 0.115287i \(-0.0367787\pi\)
\(500\) 3.57285e7 + 5.59006e9i 0.000571657 + 0.0894409i
\(501\) 0 0
\(502\) 2.72777e10 2.74526e10i 0.429530 0.432284i
\(503\) 6.90584e10i 1.07881i −0.842047 0.539404i \(-0.818649\pi\)
0.842047 0.539404i \(-0.181351\pi\)
\(504\) 0 0
\(505\) −5.48827e10 −0.843859
\(506\) −2.85921e10 2.84100e10i −0.436158 0.433380i
\(507\) 0 0
\(508\) −8.93382e10 + 5.71000e8i −1.34147 + 0.00857396i
\(509\) 5.98939e10 0.892302 0.446151 0.894958i \(-0.352794\pi\)
0.446151 + 0.894958i \(0.352794\pi\)
\(510\) 0 0
\(511\) 9.39964e9i 0.137857i
\(512\) −4.99693e10 4.71745e10i −0.727149 0.686480i
\(513\) 0 0
\(514\) −5.96493e10 5.92693e10i −0.854581 0.849136i
\(515\) 3.02997e10i 0.430735i
\(516\) 0 0
\(517\) 6.00476e10 0.840491
\(518\) −5.10959e10 + 5.14235e10i −0.709687 + 0.714238i
\(519\) 0 0
\(520\) 8.77003e9 8.93982e9i 0.119947 0.122269i
\(521\) −2.97388e10 −0.403620 −0.201810 0.979425i \(-0.564682\pi\)
−0.201810 + 0.979425i \(0.564682\pi\)
\(522\) 0 0
\(523\) 3.20935e10i 0.428954i −0.976729 0.214477i \(-0.931195\pi\)
0.976729 0.214477i \(-0.0688047\pi\)
\(524\) −3.81925e10 + 2.44105e8i −0.506586 + 0.00323781i
\(525\) 0 0
\(526\) 1.40913e10 1.41817e10i 0.184081 0.185261i
\(527\) 1.40885e10i 0.182651i
\(528\) 0 0
\(529\) 5.66001e10 0.722760
\(530\) 1.79750e10 + 1.78605e10i 0.227806 + 0.226355i
\(531\) 0 0
\(532\) 6.02401e8 + 9.42511e10i 0.00752037 + 1.17663i
\(533\) −4.19943e10 −0.520333
\(534\) 0 0
\(535\) 1.45147e10i 0.177171i
\(536\) −3.08060e10 3.02209e10i −0.373229 0.366141i
\(537\) 0 0
\(538\) −6.08755e10 6.04876e10i −0.726630 0.722000i
\(539\) 1.66923e11i 1.97770i
\(540\) 0 0
\(541\) 3.92268e10 0.457924 0.228962 0.973435i \(-0.426467\pi\)
0.228962 + 0.973435i \(0.426467\pi\)
\(542\) 7.58219e9 7.63081e9i 0.0878613 0.0884247i
\(543\) 0 0
\(544\) −7.65753e10 7.41665e10i −0.874366 0.846861i
\(545\) 5.62179e10 0.637219
\(546\) 0 0
\(547\) 9.39638e10i 1.04957i −0.851235 0.524785i \(-0.824146\pi\)
0.851235 0.524785i \(-0.175854\pi\)
\(548\) −9.90969e8 1.55046e11i −0.0109885 1.71925i
\(549\) 0 0
\(550\) 1.50633e10 1.51599e10i 0.164616 0.165671i
\(551\) 3.89027e9i 0.0422059i
\(552\) 0 0
\(553\) 1.74394e11 1.86480
\(554\) −9.70541e10 9.64358e10i −1.03033 1.02376i
\(555\) 0 0
\(556\) −1.32935e11 + 8.49650e8i −1.39105 + 0.00889080i
\(557\) −8.98122e10 −0.933071 −0.466535 0.884503i \(-0.654498\pi\)
−0.466535 + 0.884503i \(0.654498\pi\)
\(558\) 0 0
\(559\) 3.48899e10i 0.357316i
\(560\) 9.22669e8 + 7.21770e10i 0.00938196 + 0.733917i
\(561\) 0 0
\(562\) −9.62097e9 9.55967e9i −0.0964436 0.0958292i
\(563\) 1.80533e10i 0.179689i 0.995956 + 0.0898446i \(0.0286371\pi\)
−0.995956 + 0.0898446i \(0.971363\pi\)
\(564\) 0 0
\(565\) 1.90810e10 0.187244
\(566\) −2.93043e10 + 2.94922e10i −0.285540 + 0.287370i
\(567\) 0 0
\(568\) 5.43769e10 + 5.33441e10i 0.522421 + 0.512499i
\(569\) 6.90947e10 0.659167 0.329584 0.944126i \(-0.393092\pi\)
0.329584 + 0.944126i \(0.393092\pi\)
\(570\) 0 0
\(571\) 7.86073e10i 0.739467i 0.929138 + 0.369733i \(0.120551\pi\)
−0.929138 + 0.369733i \(0.879449\pi\)
\(572\) −4.78757e10 + 3.05995e8i −0.447230 + 0.00285844i
\(573\) 0 0
\(574\) 1.70607e11 1.71701e11i 1.57163 1.58170i
\(575\) 1.15114e10i 0.105307i
\(576\) 0 0
\(577\) −1.80277e11 −1.62643 −0.813216 0.581962i \(-0.802285\pi\)
−0.813216 + 0.581962i \(0.802285\pi\)
\(578\) −3.81371e10 3.78942e10i −0.341693 0.339517i
\(579\) 0 0
\(580\) −1.90418e7 2.97927e9i −0.000168266 0.0263268i
\(581\) 5.98273e10 0.525043
\(582\) 0 0
\(583\) 9.68734e10i 0.838553i
\(584\) 6.84216e9 6.97462e9i 0.0588223 0.0599611i
\(585\) 0 0
\(586\) 1.34941e11 + 1.34081e11i 1.14433 + 1.13704i
\(587\) 3.62809e9i 0.0305581i 0.999883 + 0.0152790i \(0.00486366\pi\)
−0.999883 + 0.0152790i \(0.995136\pi\)
\(588\) 0 0
\(589\) 1.29475e10 0.107578
\(590\) 5.32928e10 5.36345e10i 0.439806 0.442626i
\(591\) 0 0
\(592\) −7.53457e10 + 9.63175e8i −0.613439 + 0.00784185i
\(593\) −8.72511e10 −0.705589 −0.352795 0.935701i \(-0.614769\pi\)
−0.352795 + 0.935701i \(0.614769\pi\)
\(594\) 0 0
\(595\) 1.11977e11i 0.893431i
\(596\) 1.00455e9 + 1.57172e11i 0.00796137 + 1.24563i
\(597\) 0 0
\(598\) −1.81768e10 + 1.82933e10i −0.142139 + 0.143050i
\(599\) 1.90496e10i 0.147972i 0.997259 + 0.0739858i \(0.0235720\pi\)
−0.997259 + 0.0739858i \(0.976428\pi\)
\(600\) 0 0
\(601\) 1.75085e11 1.34200 0.670998 0.741459i \(-0.265866\pi\)
0.670998 + 0.741459i \(0.265866\pi\)
\(602\) 1.42654e11 + 1.41745e11i 1.08617 + 1.07925i
\(603\) 0 0
\(604\) −1.38535e11 + 8.85437e8i −1.04090 + 0.00665289i
\(605\) −2.17869e10 −0.162620
\(606\) 0 0
\(607\) 1.75308e11i 1.29136i 0.763608 + 0.645680i \(0.223426\pi\)
−0.763608 + 0.645680i \(0.776574\pi\)
\(608\) −6.81600e10 + 7.03737e10i −0.498787 + 0.514987i
\(609\) 0 0
\(610\) 1.63697e10 + 1.62654e10i 0.118228 + 0.117475i
\(611\) 3.84186e10i 0.275662i
\(612\) 0 0
\(613\) 1.26999e10 0.0899412 0.0449706 0.998988i \(-0.485681\pi\)
0.0449706 + 0.998988i \(0.485681\pi\)
\(614\) 1.96351e11 1.97610e11i 1.38153 1.39039i
\(615\) 0 0
\(616\) 1.93250e11 1.96991e11i 1.34214 1.36812i
\(617\) −2.29769e11 −1.58544 −0.792720 0.609586i \(-0.791336\pi\)
−0.792720 + 0.609586i \(0.791336\pi\)
\(618\) 0 0
\(619\) 1.67400e11i 1.14023i −0.821564 0.570116i \(-0.806898\pi\)
0.821564 0.570116i \(-0.193102\pi\)
\(620\) 9.91553e9 6.33746e7i 0.0671041 0.000428892i
\(621\) 0 0
\(622\) −9.71801e10 + 9.78032e10i −0.649256 + 0.653419i
\(623\) 2.13870e11i 1.41971i
\(624\) 0 0
\(625\) 6.10352e9 0.0400000
\(626\) 1.10885e11 + 1.10179e11i 0.722065 + 0.717464i
\(627\) 0 0
\(628\) −1.05367e9 1.64856e11i −0.00677432 1.05990i
\(629\) −1.16893e11 −0.746768
\(630\) 0 0
\(631\) 2.92637e9i 0.0184591i 0.999957 + 0.00922957i \(0.00293791\pi\)
−0.999957 + 0.00922957i \(0.997062\pi\)
\(632\) 1.29402e11 + 1.26944e11i 0.811098 + 0.795693i
\(633\) 0 0
\(634\) −7.46319e10 7.41564e10i −0.461921 0.458978i
\(635\) 9.75441e10i 0.599938i
\(636\) 0 0
\(637\) −1.06798e11 −0.648642
\(638\) −8.02814e9 + 8.07961e9i −0.0484543 + 0.0487650i
\(639\) 0 0
\(640\) −5.18542e10 + 5.42277e10i −0.309075 + 0.323222i
\(641\) 1.15318e11 0.683071 0.341535 0.939869i \(-0.389053\pi\)
0.341535 + 0.939869i \(0.389053\pi\)
\(642\) 0 0
\(643\) 4.99010e10i 0.291921i −0.989290 0.145961i \(-0.953373\pi\)
0.989290 0.145961i \(-0.0466273\pi\)
\(644\) −9.50011e8 1.48638e11i −0.00552313 0.864144i
\(645\) 0 0
\(646\) −1.07123e11 + 1.07810e11i −0.615110 + 0.619054i
\(647\) 5.43112e10i 0.309936i −0.987919 0.154968i \(-0.950473\pi\)
0.987919 0.154968i \(-0.0495275\pi\)
\(648\) 0 0
\(649\) −2.89055e11 −1.62930
\(650\) −9.69937e9 9.63757e9i −0.0543363 0.0539901i
\(651\) 0 0
\(652\) −1.72696e11 + 1.10378e9i −0.955633 + 0.00610788i
\(653\) −1.40265e11 −0.771433 −0.385716 0.922617i \(-0.626046\pi\)
−0.385716 + 0.922617i \(0.626046\pi\)
\(654\) 0 0
\(655\) 4.17006e10i 0.226557i
\(656\) 2.51576e11 3.21600e9i 1.35848 0.0173660i
\(657\) 0 0
\(658\) 1.57081e11 + 1.56081e11i 0.837955 + 0.832617i
\(659\) 2.51334e11i 1.33263i 0.745670 + 0.666315i \(0.232129\pi\)
−0.745670 + 0.666315i \(0.767871\pi\)
\(660\) 0 0
\(661\) 1.18006e10 0.0618155 0.0309077 0.999522i \(-0.490160\pi\)
0.0309077 + 0.999522i \(0.490160\pi\)
\(662\) −2.62533e11 + 2.64216e11i −1.36695 + 1.37571i
\(663\) 0 0
\(664\) 4.43924e10 + 4.35493e10i 0.228369 + 0.224031i
\(665\) 1.02908e11 0.526216
\(666\) 0 0
\(667\) 6.13511e9i 0.0309970i
\(668\) −1.16620e11 + 7.45368e8i −0.585687 + 0.00374339i
\(669\) 0 0
\(670\) −3.32104e10 + 3.34233e10i −0.164807 + 0.165863i
\(671\) 8.82220e10i 0.435198i
\(672\) 0 0
\(673\) −3.32886e11 −1.62269 −0.811345 0.584567i \(-0.801264\pi\)
−0.811345 + 0.584567i \(0.801264\pi\)
\(674\) 2.26203e10 + 2.24762e10i 0.109612 + 0.108914i
\(675\) 0 0
\(676\) −1.13890e9 1.78192e11i −0.00545381 0.853299i
\(677\) 1.55980e11 0.742530 0.371265 0.928527i \(-0.378924\pi\)
0.371265 + 0.928527i \(0.378924\pi\)
\(678\) 0 0
\(679\) 4.91776e11i 2.31360i
\(680\) −8.15100e10 + 8.30880e10i −0.381219 + 0.388600i
\(681\) 0 0
\(682\) −2.68904e10 2.67191e10i −0.124297 0.123505i
\(683\) 2.38756e10i 0.109716i 0.998494 + 0.0548581i \(0.0174707\pi\)
−0.998494 + 0.0548581i \(0.982529\pi\)
\(684\) 0 0
\(685\) −1.69287e11 −0.768887
\(686\) 1.77694e11 1.78833e11i 0.802371 0.807516i
\(687\) 0 0
\(688\) 2.67194e9 + 2.09016e11i 0.0119254 + 0.932880i
\(689\) −6.19799e10 −0.275026
\(690\) 0 0
\(691\) 3.49556e11i 1.53322i 0.642113 + 0.766610i \(0.278058\pi\)
−0.642113 + 0.766610i \(0.721942\pi\)
\(692\) −1.57784e9 2.46867e11i −0.00688078 1.07656i
\(693\) 0 0
\(694\) 7.12574e10 7.17143e10i 0.307180 0.309149i
\(695\) 1.45146e11i 0.622107i
\(696\) 0 0
\(697\) 3.90301e11 1.65374
\(698\) 2.12253e10 + 2.10900e10i 0.0894193 + 0.0888496i
\(699\) 0 0
\(700\) 7.88099e10 5.03709e8i 0.328238 0.00209791i
\(701\) 2.57887e10 0.106796 0.0533982 0.998573i \(-0.482995\pi\)
0.0533982 + 0.998573i \(0.482995\pi\)
\(702\) 0 0
\(703\) 1.07426e11i 0.439834i
\(704\) 2.86787e11 5.49954e9i 1.16753 0.0223891i
\(705\) 0 0
\(706\) 3.42914e11 + 3.40730e11i 1.38028 + 1.37148i
\(707\) 7.73749e11i 3.09686i
\(708\) 0 0
\(709\) −1.18322e11 −0.468251 −0.234126 0.972206i \(-0.575223\pi\)
−0.234126 + 0.972206i \(0.575223\pi\)
\(710\) 5.86210e10 5.89968e10i 0.230685 0.232164i
\(711\) 0 0
\(712\) 1.55680e11 1.58694e11i 0.605776 0.617504i
\(713\) −2.04187e10 −0.0790079
\(714\) 0 0
\(715\) 5.22731e10i 0.200011i
\(716\) 2.59490e11 1.65851e9i 0.987343 0.00631055i
\(717\) 0 0
\(718\) −2.05339e11 + 2.06655e11i −0.772632 + 0.777587i
\(719\) 1.28179e11i 0.479624i −0.970819 0.239812i \(-0.922914\pi\)
0.970819 0.239812i \(-0.0770858\pi\)
\(720\) 0 0
\(721\) 4.27173e11 1.58075
\(722\) −9.36814e10 9.30846e10i −0.344750 0.342554i
\(723\) 0 0
\(724\) 2.47893e8 + 3.87850e10i 0.000902213 + 0.141159i
\(725\) −3.25292e9 −0.0117739
\(726\) 0 0
\(727\) 2.11824e11i 0.758295i 0.925336 + 0.379148i \(0.123783\pi\)
−0.925336 + 0.379148i \(0.876217\pi\)
\(728\) −1.26036e11 1.23642e11i −0.448712 0.440190i
\(729\) 0 0
\(730\) −7.56720e9 7.51899e9i −0.0266467 0.0264770i
\(731\) 3.24272e11i 1.13564i
\(732\) 0 0
\(733\) 2.18401e11 0.756552 0.378276 0.925693i \(-0.376517\pi\)
0.378276 + 0.925693i \(0.376517\pi\)
\(734\) 1.65382e11 1.66442e11i 0.569776 0.573429i
\(735\) 0 0
\(736\) 1.07491e11 1.10982e11i 0.366321 0.378218i
\(737\) 1.80129e11 0.610541
\(738\) 0 0
\(739\) 1.87281e11i 0.627936i −0.949433 0.313968i \(-0.898341\pi\)
0.949433 0.313968i \(-0.101659\pi\)
\(740\) 5.25822e8 + 8.22697e10i 0.00175353 + 0.274355i
\(741\) 0 0
\(742\) 2.51801e11 2.53416e11i 0.830696 0.836023i
\(743\) 4.43366e11i 1.45481i 0.686207 + 0.727406i \(0.259274\pi\)
−0.686207 + 0.727406i \(0.740726\pi\)
\(744\) 0 0
\(745\) 1.71608e11 0.557074
\(746\) −1.60347e11 1.59326e11i −0.517733 0.514435i
\(747\) 0 0
\(748\) 4.44963e11 2.84396e9i 1.42141 0.00908484i
\(749\) −2.04631e11 −0.650196
\(750\) 0 0
\(751\) 1.63129e11i 0.512827i −0.966567 0.256414i \(-0.917459\pi\)
0.966567 0.256414i \(-0.0825409\pi\)
\(752\) 2.94217e9 + 2.30155e11i 0.00920018 + 0.719697i
\(753\) 0 0
\(754\) 5.16936e9 + 5.13643e9i 0.0159938 + 0.0158919i
\(755\) 1.51260e11i 0.465516i
\(756\) 0 0
\(757\) 8.66867e10 0.263979 0.131989 0.991251i \(-0.457864\pi\)
0.131989 + 0.991251i \(0.457864\pi\)
\(758\) 4.44411e10 4.47260e10i 0.134619 0.135483i
\(759\) 0 0
\(760\) 7.63589e10 + 7.49087e10i 0.228879 + 0.224532i
\(761\) −3.59912e11 −1.07314 −0.536571 0.843855i \(-0.680281\pi\)
−0.536571 + 0.843855i \(0.680281\pi\)
\(762\) 0 0
\(763\) 7.92573e11i 2.33852i
\(764\) −1.39821e11 + 8.93656e8i −0.410391 + 0.00262299i
\(765\) 0 0
\(766\) −3.86889e11 + 3.89370e11i −1.12375 + 1.13096i
\(767\) 1.84938e11i 0.534373i
\(768\) 0 0
\(769\) −6.61724e11 −1.89222 −0.946110 0.323845i \(-0.895024\pi\)
−0.946110 + 0.323845i \(0.895024\pi\)
\(770\) −2.13728e11 2.12366e11i −0.607993 0.604120i
\(771\) 0 0
\(772\) 2.48707e9 + 3.89125e11i 0.00700195 + 1.09552i
\(773\) 2.24564e11 0.628958 0.314479 0.949264i \(-0.398170\pi\)
0.314479 + 0.949264i \(0.398170\pi\)
\(774\) 0 0
\(775\) 1.08263e10i 0.0300105i
\(776\) −3.57972e11 + 3.64903e11i −0.987194 + 1.00631i
\(777\) 0 0
\(778\) 4.70232e9 + 4.67236e9i 0.0128349 + 0.0127532i
\(779\) 3.58691e11i 0.974027i
\(780\) 0 0
\(781\) −3.17954e11 −0.854594
\(782\) 1.68938e11 1.70021e11i 0.451751 0.454648i
\(783\) 0 0
\(784\) 6.39797e11 8.17879e9i 1.69347 0.0216483i
\(785\) −1.79998e11 −0.474013
\(786\) 0 0
\(787\) 6.78642e11i 1.76906i 0.466486 + 0.884528i \(0.345520\pi\)
−0.466486 + 0.884528i \(0.654480\pi\)
\(788\) −3.25224e9 5.08842e11i −0.00843485 1.31971i
\(789\) 0 0
\(790\) 1.39502e11 1.40396e11i 0.358156 0.360452i
\(791\) 2.69008e11i 0.687163i
\(792\) 0 0
\(793\) −5.64447e10 −0.142735
\(794\) −2.55884e11 2.54254e11i −0.643816 0.639714i
\(795\) 0 0
\(796\) −4.31952e11 + 2.76080e9i −1.07593 + 0.00687674i
\(797\) −2.55700e11 −0.633720 −0.316860 0.948472i \(-0.602628\pi\)
−0.316860 + 0.948472i \(0.602628\pi\)
\(798\) 0 0
\(799\) 3.57068e11i 0.876121i
\(800\) 5.88443e10 + 5.69933e10i 0.143663 + 0.139144i
\(801\) 0 0
\(802\) −2.87906e11 2.86072e11i −0.695911 0.691478i
\(803\) 4.07822e10i 0.0980863i
\(804\) 0 0
\(805\) −1.62291e11 −0.386465
\(806\) −1.70949e10 + 1.72045e10i −0.0405067 + 0.0407664i
\(807\) 0 0
\(808\) −5.63224e11 + 5.74129e11i −1.32141 + 1.34699i
\(809\) −4.12911e10 −0.0963968 −0.0481984 0.998838i \(-0.515348\pi\)
−0.0481984 + 0.998838i \(0.515348\pi\)
\(810\) 0 0
\(811\) 2.06089e11i 0.476399i −0.971216 0.238200i \(-0.923443\pi\)
0.971216 0.238200i \(-0.0765573\pi\)
\(812\) −4.20024e10 + 2.68456e8i −0.0966162 + 0.000617517i
\(813\) 0 0
\(814\) 2.21690e11 2.23111e11i 0.504949 0.508187i
\(815\) 1.88558e11i 0.427381i
\(816\) 0 0
\(817\) 2.98010e11 0.668872
\(818\) −1.66907e11 1.65843e11i −0.372786 0.370411i
\(819\) 0 0
\(820\) −1.75570e9 2.74695e11i −0.00388325 0.607569i
\(821\) −8.40243e11 −1.84941 −0.924703 0.380688i \(-0.875687\pi\)
−0.924703 + 0.380688i \(0.875687\pi\)
\(822\) 0 0
\(823\) 3.94949e11i 0.860878i −0.902620 0.430439i \(-0.858359\pi\)
0.902620 0.430439i \(-0.141641\pi\)
\(824\) 3.16966e11 + 3.10946e11i 0.687549 + 0.674491i
\(825\) 0 0
\(826\) −7.56152e11 7.51334e11i −1.62438 1.61404i
\(827\) 3.63473e11i 0.777051i −0.921438 0.388526i \(-0.872984\pi\)
0.921438 0.388526i \(-0.127016\pi\)
\(828\) 0 0
\(829\) −4.62310e11 −0.978847 −0.489424 0.872046i \(-0.662793\pi\)
−0.489424 + 0.872046i \(0.662793\pi\)
\(830\) 4.78572e10 4.81641e10i 0.100841 0.101487i
\(831\) 0 0
\(832\) −3.51862e9 1.83487e11i −0.00734310 0.382923i
\(833\) 9.92595e11 2.06154
\(834\) 0 0
\(835\) 1.27331e11i 0.261933i
\(836\) −2.61364e9 4.08927e11i −0.00535081 0.837184i
\(837\) 0 0
\(838\) 8.24289e10 8.29574e10i 0.167149 0.168221i
\(839\) 1.39033e11i 0.280588i −0.990110 0.140294i \(-0.955195\pi\)
0.990110 0.140294i \(-0.0448049\pi\)
\(840\) 0 0
\(841\) −4.98513e11 −0.996534
\(842\) 4.64366e11 + 4.61407e11i 0.923872 + 0.917986i
\(843\) 0 0
\(844\) 9.09393e11 5.81234e9i 1.79218 0.0114546i
\(845\) −1.94559e11 −0.381614
\(846\) 0 0
\(847\) 3.07156e11i 0.596795i
\(848\) 3.71305e11 4.74654e9i 0.718037 0.00917896i
\(849\) 0 0
\(850\) 9.01473e10 + 8.95730e10i 0.172694 + 0.171594i
\(851\) 1.69415e11i 0.323024i
\(852\) 0 0
\(853\) −2.95120e11 −0.557446 −0.278723 0.960372i \(-0.589911\pi\)
−0.278723 + 0.960372i \(0.589911\pi\)
\(854\) 2.29314e11 2.30784e11i 0.431120 0.433885i
\(855\) 0 0
\(856\) −1.51838e11 1.48954e11i −0.282804 0.277433i
\(857\) −2.93094e11 −0.543355 −0.271678 0.962388i \(-0.587578\pi\)
−0.271678 + 0.962388i \(0.587578\pi\)
\(858\) 0 0
\(859\) 5.58133e11i 1.02510i −0.858658 0.512549i \(-0.828701\pi\)
0.858658 0.512549i \(-0.171299\pi\)
\(860\) 2.28224e11 1.45868e9i 0.417222 0.00266665i
\(861\) 0 0
\(862\) −4.45605e10 + 4.48463e10i −0.0807089 + 0.0812264i
\(863\) 3.25698e11i 0.587181i −0.955931 0.293590i \(-0.905150\pi\)
0.955931 0.293590i \(-0.0948502\pi\)
\(864\) 0 0
\(865\) −2.69542e11 −0.481463
\(866\) −3.27697e11 3.25609e11i −0.582641 0.578929i
\(867\) 0 0
\(868\) −8.93469e8 1.39791e11i −0.00157398 0.246264i
\(869\) −7.56643e11 −1.32682
\(870\) 0 0
\(871\) 1.15247e11i 0.200243i
\(872\) 5.76927e11 5.88096e11i 0.997826 1.01714i
\(873\) 0 0
\(874\) −1.56251e11 1.55256e11i −0.267780 0.266074i
\(875\) 8.60487e10i 0.146795i
\(876\) 0 0
\(877\) −2.02891e11 −0.342976 −0.171488 0.985186i \(-0.554857\pi\)
−0.171488 + 0.985186i \(0.554857\pi\)
\(878\) −1.87590e11 + 1.88793e11i −0.315669 + 0.317693i
\(879\) 0 0
\(880\) −4.00318e9 3.13154e11i −0.00667536 0.522189i
\(881\) 6.22197e10 0.103282 0.0516409 0.998666i \(-0.483555\pi\)
0.0516409 + 0.998666i \(0.483555\pi\)
\(882\) 0 0
\(883\) 7.69290e10i 0.126546i 0.997996 + 0.0632729i \(0.0201538\pi\)
−0.997996 + 0.0632729i \(0.979846\pi\)
\(884\) −1.81957e9 2.84689e11i −0.00297962 0.466188i
\(885\) 0 0
\(886\) −1.81857e11 + 1.83023e11i −0.295117 + 0.297010i
\(887\) 7.30650e10i 0.118036i 0.998257 + 0.0590180i \(0.0187969\pi\)
−0.998257 + 0.0590180i \(0.981203\pi\)
\(888\) 0 0
\(889\) 1.37520e12 2.20170
\(890\) −1.72177e11 1.71080e11i −0.274419 0.272671i
\(891\) 0 0
\(892\) −3.61432e11 + 2.31007e9i −0.570909 + 0.00364893i
\(893\) 3.28150e11 0.516020
\(894\) 0 0
\(895\) 2.83324e11i 0.441562i
\(896\) 7.64514e11 + 7.31053e11i 1.18619 + 1.13427i
\(897\) 0 0
\(898\) 1.49217e11 + 1.48266e11i 0.229463 + 0.228001i
\(899\) 5.76996e9i 0.00883353i
\(900\) 0 0
\(901\) 5.76050e11 0.874100
\(902\) −7.40213e11 + 7.44959e11i −1.11823 + 1.12540i
\(903\) 0 0
\(904\) 1.95816e11 1.99607e11i 0.293207 0.298883i
\(905\) 4.23475e10 0.0631297
\(906\) 0 0
\(907\) 7.63733e11i 1.12853i −0.825594 0.564264i \(-0.809160\pi\)
0.825594 0.564264i \(-0.190840\pi\)
\(908\) −2.78985e11 + 1.78312e9i −0.410429 + 0.00262324i
\(909\) 0 0
\(910\) −1.35873e11 + 1.36744e11i −0.198137 + 0.199408i
\(911\) 6.04985e11i 0.878357i −0.898400 0.439178i \(-0.855270\pi\)
0.898400 0.439178i \(-0.144730\pi\)
\(912\) 0 0
\(913\) −2.59573e11 −0.373573
\(914\) 7.71770e11 + 7.66853e11i 1.10587 + 1.09882i
\(915\) 0 0
\(916\) −3.69459e9 5.78053e11i −0.00524789 0.821080i
\(917\) 5.87904e11 0.831436
\(918\) 0 0
\(919\) 1.09773e12i 1.53898i 0.638657 + 0.769492i \(0.279490\pi\)
−0.638657 + 0.769492i \(0.720510\pi\)
\(920\) −1.20421e11 1.18134e11i −0.168094 0.164901i
\(921\) 0 0
\(922\) −3.25493e11 3.23420e11i −0.450421 0.447551i
\(923\) 2.03428e11i 0.280287i
\(924\) 0 0
\(925\) 8.98264e10 0.122698
\(926\) 4.76732e10 4.79789e10i 0.0648381 0.0652539i
\(927\) 0 0
\(928\) −3.13616e10 3.03750e10i −0.0422869 0.0409567i
\(929\) −5.68272e11 −0.762945 −0.381473 0.924380i \(-0.624583\pi\)
−0.381473 + 0.924380i \(0.624583\pi\)
\(930\) 0 0
\(931\) 9.12208e11i 1.21421i
\(932\) −1.06758e9 1.67032e11i −0.00141493 0.221379i
\(933\) 0 0
\(934\) 4.81852e11 4.84942e11i 0.633179 0.637238i
\(935\) 4.85834e11i 0.635685i
\(936\) 0 0
\(937\) 1.49600e11 0.194076 0.0970382 0.995281i \(-0.469063\pi\)
0.0970382 + 0.995281i \(0.469063\pi\)
\(938\) 4.71209e11 + 4.68207e11i 0.608699 + 0.604821i
\(939\) 0 0
\(940\) 2.51306e11 1.60621e9i 0.321878 0.00205727i
\(941\) 5.28765e11 0.674379 0.337190 0.941437i \(-0.390524\pi\)
0.337190 + 0.941437i \(0.390524\pi\)
\(942\) 0 0
\(943\) 5.65671e11i 0.715348i
\(944\) −1.41629e10 1.10791e12i −0.0178346 1.39514i
\(945\) 0 0
\(946\) −6.18931e11 6.14988e11i −0.772819 0.767896i
\(947\) 9.04370e11i 1.12447i −0.826979 0.562233i \(-0.809943\pi\)
0.826979 0.562233i \(-0.190057\pi\)
\(948\) 0 0
\(949\) 2.60926e10 0.0321701
\(950\) 8.23187e10 8.28465e10i 0.101066 0.101714i
\(951\) 0 0
\(952\) 1.17139e12 + 1.14915e12i 1.42612 + 1.39903i
\(953\) 5.71895e11 0.693337 0.346669 0.937988i \(-0.387313\pi\)
0.346669 + 0.937988i \(0.387313\pi\)
\(954\) 0 0
\(955\) 1.52664e11i 0.183536i
\(956\) −1.22698e12 + 7.84220e9i −1.46895 + 0.00938872i
\(957\) 0 0
\(958\) −7.58994e11 + 7.63861e11i −0.901107 + 0.906885i
\(959\) 2.38665e12i 2.82173i
\(960\) 0 0
\(961\) 8.33688e11 0.977484
\(962\) −1.42747e11 1.41838e11i −0.166674 0.165612i
\(963\) 0 0
\(964\) −8.48163e9 1.32703e12i −0.00982135 1.53664i
\(965\) 4.24867e11 0.489941
\(966\) 0 0
\(967\) 9.92056e11i 1.13457i −0.823522 0.567284i \(-0.807994\pi\)
0.823522 0.567284i \(-0.192006\pi\)
\(968\) −2.23584e11 + 2.27913e11i −0.254647 + 0.259577i
\(969\) 0 0
\(970\) 3.95905e11 + 3.93383e11i 0.447203 + 0.444354i
\(971\) 4.62553e11i 0.520336i −0.965563 0.260168i \(-0.916222\pi\)
0.965563 0.260168i \(-0.0837780\pi\)
\(972\) 0 0
\(973\) 2.04630e12 2.28306
\(974\) −1.09384e12 + 1.10085e12i −1.21539 + 1.22319i
\(975\) 0 0
\(976\) 3.38145e11 4.32264e9i 0.372652 0.00476376i
\(977\) −1.35557e11 −0.148780 −0.0743899 0.997229i \(-0.523701\pi\)
−0.0743899 + 0.997229i \(0.523701\pi\)
\(978\) 0 0
\(979\) 9.27919e11i 1.01013i
\(980\) −4.46501e9 6.98592e11i −0.00484082 0.757390i
\(981\) 0 0
\(982\) −1.95749e11 + 1.97004e11i −0.210500 + 0.211850i
\(983\) 1.95656e10i 0.0209546i 0.999945 + 0.0104773i \(0.00333509\pi\)
−0.999945 + 0.0104773i \(0.996665\pi\)
\(984\) 0 0
\(985\) −5.55580e11 −0.590204
\(986\) −4.80448e10 4.77387e10i −0.0508322 0.0505083i
\(987\) 0 0
\(988\) −2.61633e11 + 1.67221e9i −0.274577 + 0.00175494i
\(989\) −4.69975e11 −0.491235
\(990\) 0 0
\(991\) 4.63152e11i 0.480208i 0.970747 + 0.240104i \(0.0771815\pi\)
−0.970747 + 0.240104i \(0.922818\pi\)
\(992\) 1.01093e11 1.04377e11i 0.104394 0.107785i
\(993\) 0 0
\(994\) −8.31751e11 8.26452e11i −0.852016 0.846588i
\(995\) 4.71628e11i 0.481180i
\(996\) 0 0
\(997\) −5.69988e11 −0.576879 −0.288439 0.957498i \(-0.593136\pi\)
−0.288439 + 0.957498i \(0.593136\pi\)
\(998\) −1.61222e11 + 1.62256e11i −0.162518 + 0.163560i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 180.9.c.a.91.5 16
3.2 odd 2 20.9.b.a.11.12 yes 16
4.3 odd 2 inner 180.9.c.a.91.6 16
12.11 even 2 20.9.b.a.11.11 16
15.2 even 4 100.9.d.c.99.8 32
15.8 even 4 100.9.d.c.99.25 32
15.14 odd 2 100.9.b.d.51.5 16
24.5 odd 2 320.9.b.d.191.15 16
24.11 even 2 320.9.b.d.191.2 16
60.23 odd 4 100.9.d.c.99.7 32
60.47 odd 4 100.9.d.c.99.26 32
60.59 even 2 100.9.b.d.51.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.9.b.a.11.11 16 12.11 even 2
20.9.b.a.11.12 yes 16 3.2 odd 2
100.9.b.d.51.5 16 15.14 odd 2
100.9.b.d.51.6 16 60.59 even 2
100.9.d.c.99.7 32 60.23 odd 4
100.9.d.c.99.8 32 15.2 even 4
100.9.d.c.99.25 32 15.8 even 4
100.9.d.c.99.26 32 60.47 odd 4
180.9.c.a.91.5 16 1.1 even 1 trivial
180.9.c.a.91.6 16 4.3 odd 2 inner
320.9.b.d.191.2 16 24.11 even 2
320.9.b.d.191.15 16 24.5 odd 2