Properties

Label 100.9.d.c.99.8
Level $100$
Weight $9$
Character 100.99
Analytic conductor $40.738$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [100,9,Mod(99,100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(100, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("100.99"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 100 = 2^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 100.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,104] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(40.7378610061\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.8
Character \(\chi\) \(=\) 100.99
Dual form 100.9.d.c.99.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-11.2775 + 11.3498i) q^{2} -137.297 q^{3} +(-1.63618 - 255.995i) q^{4} +(1548.37 - 1558.29i) q^{6} +3940.57 q^{7} +(2923.94 + 2868.41i) q^{8} +12289.4 q^{9} -17097.0i q^{11} +(224.642 + 35147.3i) q^{12} -10938.7i q^{13} +(-44439.8 + 44724.8i) q^{14} +(-65530.6 + 837.705i) q^{16} +101666. i q^{17} +(-138594. + 139483. i) q^{18} -93432.1i q^{19} -541029. q^{21} +(194047. + 192811. i) q^{22} +147346. q^{23} +(-401448. - 393824. i) q^{24} +(124152. + 123361. i) q^{26} -786497. q^{27} +(-6447.48 - 1.00877e6i) q^{28} -41637.4 q^{29} -138577. i q^{31} +(729514. - 753207. i) q^{32} +2.34736e6i q^{33} +(-1.15389e6 - 1.14653e6i) q^{34} +(-20107.7 - 3.14603e6i) q^{36} +1.14978e6i q^{37} +(1.06044e6 + 1.05368e6i) q^{38} +1.50185e6i q^{39} +3.83906e6 q^{41} +(6.10145e6 - 6.14057e6i) q^{42} -3.18959e6 q^{43} +(-4.37673e6 + 27973.6i) q^{44} +(-1.66170e6 + 1.67235e6i) q^{46} -3.51218e6 q^{47} +(8.99715e6 - 115014. i) q^{48} +9.76332e6 q^{49} -1.39584e7i q^{51} +(-2.80024e6 + 17897.6i) q^{52} -5.66612e6i q^{53} +(8.86971e6 - 8.92658e6i) q^{54} +(1.15220e7 + 1.13032e7i) q^{56} +1.28279e7i q^{57} +(469565. - 472576. i) q^{58} +1.69068e7i q^{59} -5.16010e6 q^{61} +(1.57282e6 + 1.56280e6i) q^{62} +4.84274e7 q^{63} +(321668. + 1.67741e7i) q^{64} +(-2.66421e7 - 2.64723e7i) q^{66} +1.05358e7 q^{67} +(2.60259e7 - 166343. i) q^{68} -2.02302e7 q^{69} -1.85971e7i q^{71} +(3.59336e7 + 3.52511e7i) q^{72} -2.38535e6i q^{73} +(-1.30498e7 - 1.29666e7i) q^{74} +(-2.39181e7 + 152871. i) q^{76} -6.73718e7i q^{77} +(-1.70457e7 - 1.69371e7i) q^{78} -4.42560e7i q^{79} +2.73525e7 q^{81} +(-4.32950e7 + 4.35726e7i) q^{82} -1.51824e7 q^{83} +(885218. + 1.38500e8i) q^{84} +(3.59706e7 - 3.62013e7i) q^{86} +5.71668e6 q^{87} +(4.90411e7 - 4.99905e7i) q^{88} +5.42739e7 q^{89} -4.31047e7i q^{91} +(-241085. - 3.77199e7i) q^{92} +1.90261e7i q^{93} +(3.96086e7 - 3.98625e7i) q^{94} +(-1.00160e8 + 1.03413e8i) q^{96} -1.24798e8i q^{97} +(-1.10106e8 + 1.10812e8i) q^{98} -2.10112e8i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 104 q^{4} + 8736 q^{6} + 77600 q^{9} - 136944 q^{14} - 162848 q^{16} + 828992 q^{21} - 327584 q^{24} + 2074248 q^{26} - 5529792 q^{29} - 7587928 q^{34} - 10937832 q^{36} - 17152896 q^{41} - 33842400 q^{44}+ \cdots - 906779904 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/100\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(77\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −11.2775 + 11.3498i −0.704843 + 0.709363i
\(3\) −137.297 −1.69502 −0.847512 0.530777i \(-0.821900\pi\)
−0.847512 + 0.530777i \(0.821900\pi\)
\(4\) −1.63618 255.995i −0.00639132 0.999980i
\(5\) 0 0
\(6\) 1548.37 1558.29i 1.19473 1.20239i
\(7\) 3940.57 1.64122 0.820611 0.571487i \(-0.193633\pi\)
0.820611 + 0.571487i \(0.193633\pi\)
\(8\) 2923.94 + 2868.41i 0.713853 + 0.700295i
\(9\) 12289.4 1.87310
\(10\) 0 0
\(11\) 17097.0i 1.16775i −0.811845 0.583873i \(-0.801537\pi\)
0.811845 0.583873i \(-0.198463\pi\)
\(12\) 224.642 + 35147.3i 0.0108334 + 1.69499i
\(13\) 10938.7i 0.382994i −0.981493 0.191497i \(-0.938666\pi\)
0.981493 0.191497i \(-0.0613341\pi\)
\(14\) −44439.8 + 44724.8i −1.15680 + 1.16422i
\(15\) 0 0
\(16\) −65530.6 + 837.705i −0.999918 + 0.0127824i
\(17\) 101666.i 1.21725i 0.793459 + 0.608624i \(0.208278\pi\)
−0.793459 + 0.608624i \(0.791722\pi\)
\(18\) −138594. + 139483.i −1.32025 + 1.32871i
\(19\) 93432.1i 0.716938i −0.933542 0.358469i \(-0.883299\pi\)
0.933542 0.358469i \(-0.116701\pi\)
\(20\) 0 0
\(21\) −541029. −2.78191
\(22\) 194047. + 192811.i 0.828355 + 0.823078i
\(23\) 147346. 0.526536 0.263268 0.964723i \(-0.415200\pi\)
0.263268 + 0.964723i \(0.415200\pi\)
\(24\) −401448. 393824.i −1.21000 1.18702i
\(25\) 0 0
\(26\) 124152. + 123361.i 0.271681 + 0.269951i
\(27\) −786497. −1.47993
\(28\) −6447.48 1.00877e6i −0.0104896 1.64119i
\(29\) −41637.4 −0.0588696 −0.0294348 0.999567i \(-0.509371\pi\)
−0.0294348 + 0.999567i \(0.509371\pi\)
\(30\) 0 0
\(31\) 138577.i 0.150052i −0.997182 0.0750262i \(-0.976096\pi\)
0.997182 0.0750262i \(-0.0239040\pi\)
\(32\) 729514. 753207.i 0.695719 0.718314i
\(33\) 2.34736e6i 1.97936i
\(34\) −1.15389e6 1.14653e6i −0.863470 0.857969i
\(35\) 0 0
\(36\) −20107.7 3.14603e6i −0.0119716 1.87307i
\(37\) 1.14978e6i 0.613489i 0.951792 + 0.306745i \(0.0992397\pi\)
−0.951792 + 0.306745i \(0.900760\pi\)
\(38\) 1.06044e6 + 1.05368e6i 0.508569 + 0.505329i
\(39\) 1.50185e6i 0.649183i
\(40\) 0 0
\(41\) 3.83906e6 1.35859 0.679297 0.733864i \(-0.262285\pi\)
0.679297 + 0.733864i \(0.262285\pi\)
\(42\) 6.10145e6 6.14057e6i 1.96081 1.97338i
\(43\) −3.18959e6 −0.932956 −0.466478 0.884533i \(-0.654477\pi\)
−0.466478 + 0.884533i \(0.654477\pi\)
\(44\) −4.37673e6 + 27973.6i −1.16772 + 0.00746343i
\(45\) 0 0
\(46\) −1.66170e6 + 1.67235e6i −0.371125 + 0.373505i
\(47\) −3.51218e6 −0.719756 −0.359878 0.932999i \(-0.617182\pi\)
−0.359878 + 0.932999i \(0.617182\pi\)
\(48\) 8.99715e6 115014.i 1.69488 0.0216664i
\(49\) 9.76332e6 1.69361
\(50\) 0 0
\(51\) 1.39584e7i 2.06326i
\(52\) −2.80024e6 + 17897.6i −0.382986 + 0.00244783i
\(53\) 5.66612e6i 0.718096i −0.933319 0.359048i \(-0.883101\pi\)
0.933319 0.359048i \(-0.116899\pi\)
\(54\) 8.86971e6 8.92658e6i 1.04312 1.04981i
\(55\) 0 0
\(56\) 1.15220e7 + 1.13032e7i 1.17159 + 1.14934i
\(57\) 1.28279e7i 1.21523i
\(58\) 469565. 472576.i 0.0414939 0.0417599i
\(59\) 1.69068e7i 1.39525i 0.716461 + 0.697627i \(0.245761\pi\)
−0.716461 + 0.697627i \(0.754239\pi\)
\(60\) 0 0
\(61\) −5.16010e6 −0.372682 −0.186341 0.982485i \(-0.559663\pi\)
−0.186341 + 0.982485i \(0.559663\pi\)
\(62\) 1.57282e6 + 1.56280e6i 0.106442 + 0.105763i
\(63\) 4.84274e7 3.07418
\(64\) 321668. + 1.67741e7i 0.0191729 + 0.999816i
\(65\) 0 0
\(66\) −2.66421e7 2.64723e7i −1.40408 1.39514i
\(67\) 1.05358e7 0.522838 0.261419 0.965225i \(-0.415810\pi\)
0.261419 + 0.965225i \(0.415810\pi\)
\(68\) 2.60259e7 166343.i 1.21722 0.00777981i
\(69\) −2.02302e7 −0.892490
\(70\) 0 0
\(71\) 1.85971e7i 0.731833i −0.930648 0.365916i \(-0.880756\pi\)
0.930648 0.365916i \(-0.119244\pi\)
\(72\) 3.59336e7 + 3.52511e7i 1.33712 + 1.31173i
\(73\) 2.38535e6i 0.0839964i −0.999118 0.0419982i \(-0.986628\pi\)
0.999118 0.0419982i \(-0.0133724\pi\)
\(74\) −1.30498e7 1.29666e7i −0.435186 0.432414i
\(75\) 0 0
\(76\) −2.39181e7 + 152871.i −0.716923 + 0.00458218i
\(77\) 6.73718e7i 1.91653i
\(78\) −1.70457e7 1.69371e7i −0.460506 0.457572i
\(79\) 4.42560e7i 1.13622i −0.822951 0.568112i \(-0.807674\pi\)
0.822951 0.568112i \(-0.192326\pi\)
\(80\) 0 0
\(81\) 2.73525e7 0.635415
\(82\) −4.32950e7 + 4.35726e7i −0.957596 + 0.963736i
\(83\) −1.51824e7 −0.319910 −0.159955 0.987124i \(-0.551135\pi\)
−0.159955 + 0.987124i \(0.551135\pi\)
\(84\) 885218. + 1.38500e8i 0.0177801 + 2.78185i
\(85\) 0 0
\(86\) 3.59706e7 3.62013e7i 0.657588 0.661805i
\(87\) 5.71668e6 0.0997854
\(88\) 4.90411e7 4.99905e7i 0.817766 0.833599i
\(89\) 5.42739e7 0.865030 0.432515 0.901627i \(-0.357626\pi\)
0.432515 + 0.901627i \(0.357626\pi\)
\(90\) 0 0
\(91\) 4.31047e7i 0.628577i
\(92\) −241085. 3.77199e7i −0.00336526 0.526525i
\(93\) 1.90261e7i 0.254342i
\(94\) 3.96086e7 3.98625e7i 0.507315 0.510568i
\(95\) 0 0
\(96\) −1.00160e8 + 1.03413e8i −1.17926 + 1.21756i
\(97\) 1.24798e8i 1.40968i −0.709365 0.704841i \(-0.751018\pi\)
0.709365 0.704841i \(-0.248982\pi\)
\(98\) −1.10106e8 + 1.10812e8i −1.19373 + 1.20138i
\(99\) 2.10112e8i 2.18731i
\(100\) 0 0
\(101\) 1.96354e8 1.88693 0.943463 0.331478i \(-0.107547\pi\)
0.943463 + 0.331478i \(0.107547\pi\)
\(102\) 1.58425e8 + 1.57416e8i 1.46360 + 1.45428i
\(103\) 1.08404e8 0.963152 0.481576 0.876404i \(-0.340065\pi\)
0.481576 + 0.876404i \(0.340065\pi\)
\(104\) 3.13766e7 3.19841e7i 0.268209 0.273401i
\(105\) 0 0
\(106\) 6.43094e7 + 6.38996e7i 0.509390 + 0.506145i
\(107\) −5.19293e7 −0.396166 −0.198083 0.980185i \(-0.563472\pi\)
−0.198083 + 0.980185i \(0.563472\pi\)
\(108\) 1.28685e6 + 2.01339e8i 0.00945871 + 1.47990i
\(109\) −2.01131e8 −1.42486 −0.712432 0.701741i \(-0.752406\pi\)
−0.712432 + 0.701741i \(0.752406\pi\)
\(110\) 0 0
\(111\) 1.57861e8i 1.03988i
\(112\) −2.58228e8 + 3.30104e6i −1.64109 + 0.0209787i
\(113\) 6.82663e7i 0.418690i 0.977842 + 0.209345i \(0.0671332\pi\)
−0.977842 + 0.209345i \(0.932867\pi\)
\(114\) −1.45595e8 1.44667e8i −0.862037 0.856544i
\(115\) 0 0
\(116\) 68126.1 + 1.06590e7i 0.000376254 + 0.0588684i
\(117\) 1.34430e8i 0.717387i
\(118\) −1.91889e8 1.90666e8i −0.989741 0.983435i
\(119\) 4.00621e8i 1.99777i
\(120\) 0 0
\(121\) −7.79470e7 −0.363629
\(122\) 5.81930e7 5.85661e7i 0.262683 0.264367i
\(123\) −5.27091e8 −2.30285
\(124\) −3.54749e7 + 226736.i −0.150049 + 0.000959032i
\(125\) 0 0
\(126\) −5.46140e8 + 5.49642e8i −2.16682 + 2.18071i
\(127\) −3.48984e8 −1.34150 −0.670751 0.741683i \(-0.734028\pi\)
−0.670751 + 0.741683i \(0.734028\pi\)
\(128\) −1.94011e8 1.85519e8i −0.722746 0.691113i
\(129\) 4.37921e8 1.58138
\(130\) 0 0
\(131\) 1.49192e8i 0.506596i −0.967388 0.253298i \(-0.918485\pi\)
0.967388 0.253298i \(-0.0815153\pi\)
\(132\) 6.00912e8 3.84069e6i 1.97931 0.0126507i
\(133\) 3.68176e8i 1.17665i
\(134\) −1.18817e8 + 1.19579e8i −0.368519 + 0.370882i
\(135\) 0 0
\(136\) −2.91619e8 + 2.97265e8i −0.852433 + 0.868936i
\(137\) 6.05661e8i 1.71928i 0.510897 + 0.859642i \(0.329313\pi\)
−0.510897 + 0.859642i \(0.670687\pi\)
\(138\) 2.28146e8 2.29609e8i 0.629066 0.633099i
\(139\) 5.19290e8i 1.39107i −0.718490 0.695537i \(-0.755166\pi\)
0.718490 0.695537i \(-0.244834\pi\)
\(140\) 0 0
\(141\) 4.82211e8 1.22000
\(142\) 2.11074e8 + 2.09729e8i 0.519135 + 0.515828i
\(143\) −1.87018e8 −0.447239
\(144\) −8.05335e8 + 1.02949e7i −1.87295 + 0.0239427i
\(145\) 0 0
\(146\) 2.70732e7 + 2.69008e7i 0.0595839 + 0.0592043i
\(147\) −1.34047e9 −2.87071
\(148\) 2.94337e8 1.88124e6i 0.613477 0.00392100i
\(149\) 6.13964e8 1.24565 0.622827 0.782359i \(-0.285984\pi\)
0.622827 + 0.782359i \(0.285984\pi\)
\(150\) 0 0
\(151\) 5.41162e8i 1.04093i 0.853884 + 0.520463i \(0.174241\pi\)
−0.853884 + 0.520463i \(0.825759\pi\)
\(152\) 2.68001e8 2.73190e8i 0.502068 0.511788i
\(153\) 1.24941e9i 2.28003i
\(154\) 7.64657e8 + 7.59785e8i 1.35951 + 1.35085i
\(155\) 0 0
\(156\) 3.84465e8 2.45729e6i 0.649170 0.00414913i
\(157\) 6.43982e8i 1.05993i −0.848021 0.529963i \(-0.822206\pi\)
0.848021 0.529963i \(-0.177794\pi\)
\(158\) 5.02297e8 + 4.99097e8i 0.805995 + 0.800860i
\(159\) 7.77941e8i 1.21719i
\(160\) 0 0
\(161\) 5.80629e8 0.864162
\(162\) −3.08468e8 + 3.10446e8i −0.447868 + 0.450740i
\(163\) 6.74607e8 0.955653 0.477826 0.878454i \(-0.341425\pi\)
0.477826 + 0.878454i \(0.341425\pi\)
\(164\) −6.28138e6 9.82780e8i −0.00868320 1.35857i
\(165\) 0 0
\(166\) 1.71219e8 1.72317e8i 0.225486 0.226932i
\(167\) 4.55554e8 0.585699 0.292849 0.956159i \(-0.405397\pi\)
0.292849 + 0.956159i \(0.405397\pi\)
\(168\) −1.58194e9 1.55189e9i −1.98588 1.94816i
\(169\) 6.96076e8 0.853316
\(170\) 0 0
\(171\) 1.14823e9i 1.34290i
\(172\) 5.21874e6 + 8.16519e8i 0.00596282 + 0.932937i
\(173\) 9.64344e8i 1.07658i −0.842759 0.538292i \(-0.819070\pi\)
0.842759 0.538292i \(-0.180930\pi\)
\(174\) −6.44699e7 + 6.48832e7i −0.0703331 + 0.0707841i
\(175\) 0 0
\(176\) 1.43222e7 + 1.12037e9i 0.0149265 + 1.16765i
\(177\) 2.32125e9i 2.36499i
\(178\) −6.12074e8 + 6.15998e8i −0.609711 + 0.613620i
\(179\) 1.01365e9i 0.987363i −0.869643 0.493682i \(-0.835651\pi\)
0.869643 0.493682i \(-0.164349\pi\)
\(180\) 0 0
\(181\) 1.51507e8 0.141162 0.0705812 0.997506i \(-0.477515\pi\)
0.0705812 + 0.997506i \(0.477515\pi\)
\(182\) 4.89230e8 + 4.86113e8i 0.445889 + 0.443049i
\(183\) 7.08465e8 0.631705
\(184\) 4.30832e8 + 4.22649e8i 0.375869 + 0.368730i
\(185\) 0 0
\(186\) −2.15943e8 2.14567e8i −0.180421 0.179272i
\(187\) 1.73817e9 1.42143
\(188\) 5.74654e6 + 8.99099e8i 0.00460019 + 0.719741i
\(189\) −3.09925e9 −2.42890
\(190\) 0 0
\(191\) 5.46186e8i 0.410399i −0.978720 0.205200i \(-0.934216\pi\)
0.978720 0.205200i \(-0.0657844\pi\)
\(192\) −4.41640e7 2.30304e9i −0.0324985 1.69471i
\(193\) 1.52005e9i 1.09554i −0.836628 0.547771i \(-0.815477\pi\)
0.836628 0.547771i \(-0.184523\pi\)
\(194\) 1.41643e9 + 1.40741e9i 0.999976 + 0.993605i
\(195\) 0 0
\(196\) −1.59745e7 2.49936e9i −0.0108244 1.69358i
\(197\) 1.98770e9i 1.31974i 0.751382 + 0.659868i \(0.229388\pi\)
−0.751382 + 0.659868i \(0.770612\pi\)
\(198\) 2.38473e9 + 2.36954e9i 1.55160 + 1.54171i
\(199\) 1.68735e9i 1.07595i −0.842960 0.537976i \(-0.819189\pi\)
0.842960 0.537976i \(-0.180811\pi\)
\(200\) 0 0
\(201\) −1.44653e9 −0.886222
\(202\) −2.21438e9 + 2.22858e9i −1.32999 + 1.33852i
\(203\) −1.64075e8 −0.0966182
\(204\) −3.57327e9 + 2.28384e7i −2.06322 + 0.0131870i
\(205\) 0 0
\(206\) −1.22252e9 + 1.23036e9i −0.678872 + 0.683224i
\(207\) 1.81080e9 0.986256
\(208\) 9.16339e6 + 7.16819e8i 0.00489556 + 0.382962i
\(209\) −1.59740e9 −0.837201
\(210\) 0 0
\(211\) 3.55239e9i 1.79222i −0.443834 0.896109i \(-0.646382\pi\)
0.443834 0.896109i \(-0.353618\pi\)
\(212\) −1.45050e9 + 9.27077e6i −0.718081 + 0.00458958i
\(213\) 2.55332e9i 1.24047i
\(214\) 5.85632e8 5.89387e8i 0.279235 0.281025i
\(215\) 0 0
\(216\) −2.29967e9 2.25599e9i −1.05645 1.03639i
\(217\) 5.46071e8i 0.246269i
\(218\) 2.26826e9 2.28280e9i 1.00431 1.01075i
\(219\) 3.27501e8i 0.142376i
\(220\) 0 0
\(221\) 1.11209e9 0.466198
\(222\) 1.79169e9 + 1.78028e9i 0.737651 + 0.732952i
\(223\) 1.41187e9 0.570920 0.285460 0.958391i \(-0.407854\pi\)
0.285460 + 0.958391i \(0.407854\pi\)
\(224\) 2.87470e9 2.96807e9i 1.14183 1.17891i
\(225\) 0 0
\(226\) −7.74809e8 7.69873e8i −0.297003 0.295111i
\(227\) 1.08981e9 0.410438 0.205219 0.978716i \(-0.434209\pi\)
0.205219 + 0.978716i \(0.434209\pi\)
\(228\) 3.28388e9 2.09888e7i 1.21520 0.00776690i
\(229\) 2.25807e9 0.821097 0.410549 0.911839i \(-0.365337\pi\)
0.410549 + 0.911839i \(0.365337\pi\)
\(230\) 0 0
\(231\) 9.24994e9i 3.24856i
\(232\) −1.21745e8 1.19433e8i −0.0420243 0.0412261i
\(233\) 6.52483e8i 0.221384i −0.993855 0.110692i \(-0.964693\pi\)
0.993855 0.110692i \(-0.0353067\pi\)
\(234\) 1.52576e9 + 1.51604e9i 0.508888 + 0.505645i
\(235\) 0 0
\(236\) 4.32805e9 2.76625e7i 1.39522 0.00891750i
\(237\) 6.07622e9i 1.92593i
\(238\) −4.54697e9 4.51800e9i −1.41715 1.40812i
\(239\) 4.79300e9i 1.46898i 0.678619 + 0.734490i \(0.262579\pi\)
−0.678619 + 0.734490i \(0.737421\pi\)
\(240\) 0 0
\(241\) −5.18381e9 −1.53667 −0.768335 0.640048i \(-0.778915\pi\)
−0.768335 + 0.640048i \(0.778915\pi\)
\(242\) 8.79047e8 8.84683e8i 0.256301 0.257945i
\(243\) 1.40479e9 0.402889
\(244\) 8.44283e6 + 1.32096e9i 0.00238193 + 0.372675i
\(245\) 0 0
\(246\) 5.94427e9 5.98238e9i 1.62315 1.63355i
\(247\) −1.02202e9 −0.274583
\(248\) 3.97494e8 4.05190e8i 0.105081 0.107115i
\(249\) 2.08449e9 0.542255
\(250\) 0 0
\(251\) 2.41878e9i 0.609398i −0.952449 0.304699i \(-0.901444\pi\)
0.952449 0.304699i \(-0.0985558\pi\)
\(252\) −7.92358e7 1.23972e10i −0.0196481 3.07412i
\(253\) 2.51917e9i 0.614859i
\(254\) 3.93567e9 3.96090e9i 0.945548 0.951611i
\(255\) 0 0
\(256\) 4.29356e9 1.09791e8i 0.999673 0.0255627i
\(257\) 5.25554e9i 1.20472i −0.798226 0.602358i \(-0.794228\pi\)
0.798226 0.602358i \(-0.205772\pi\)
\(258\) −4.93865e9 + 4.97032e9i −1.11463 + 1.12177i
\(259\) 4.53078e9i 1.00687i
\(260\) 0 0
\(261\) −5.11700e8 −0.110269
\(262\) 1.69331e9 + 1.68252e9i 0.359360 + 0.357071i
\(263\) −1.24951e9 −0.261165 −0.130583 0.991437i \(-0.541685\pi\)
−0.130583 + 0.991437i \(0.541685\pi\)
\(264\) −6.73319e9 + 6.86354e9i −1.38613 + 1.41297i
\(265\) 0 0
\(266\) 4.17873e9 + 4.15210e9i 0.834675 + 0.829357i
\(267\) −7.45164e9 −1.46625
\(268\) −1.72384e7 2.69710e9i −0.00334162 0.522827i
\(269\) 5.36357e9 1.02434 0.512171 0.858884i \(-0.328841\pi\)
0.512171 + 0.858884i \(0.328841\pi\)
\(270\) 0 0
\(271\) 6.72329e8i 0.124654i 0.998056 + 0.0623268i \(0.0198521\pi\)
−0.998056 + 0.0623268i \(0.980148\pi\)
\(272\) −8.51659e7 6.66222e9i −0.0155593 1.21715i
\(273\) 5.91814e9i 1.06545i
\(274\) −6.87414e9 6.83034e9i −1.21960 1.21183i
\(275\) 0 0
\(276\) 3.31002e7 + 5.17882e9i 0.00570419 + 0.892472i
\(277\) 8.55117e9i 1.45247i 0.687448 + 0.726234i \(0.258731\pi\)
−0.687448 + 0.726234i \(0.741269\pi\)
\(278\) 5.89384e9 + 5.85629e9i 0.986777 + 0.980490i
\(279\) 1.70303e9i 0.281064i
\(280\) 0 0
\(281\) −8.47677e8 −0.135958 −0.0679791 0.997687i \(-0.521655\pi\)
−0.0679791 + 0.997687i \(0.521655\pi\)
\(282\) −5.43813e9 + 5.47300e9i −0.859911 + 0.865425i
\(283\) −2.59848e9 −0.405111 −0.202555 0.979271i \(-0.564925\pi\)
−0.202555 + 0.979271i \(0.564925\pi\)
\(284\) −4.76076e9 + 3.04282e7i −0.731818 + 0.00467738i
\(285\) 0 0
\(286\) 2.10910e9 2.12262e9i 0.315233 0.317255i
\(287\) 1.51281e10 2.22975
\(288\) 8.96531e9 9.25649e9i 1.30315 1.34548i
\(289\) −3.36016e9 −0.481691
\(290\) 0 0
\(291\) 1.71344e10i 2.38944i
\(292\) −6.10637e8 + 3.90285e6i −0.0839946 + 0.000536847i
\(293\) 1.18893e10i 1.61319i −0.591107 0.806594i \(-0.701309\pi\)
0.591107 0.806594i \(-0.298691\pi\)
\(294\) 1.51172e10 1.52141e10i 2.02340 2.03637i
\(295\) 0 0
\(296\) −3.29803e9 + 3.36188e9i −0.429624 + 0.437941i
\(297\) 1.34467e10i 1.72818i
\(298\) −6.92397e9 + 6.96837e9i −0.877992 + 0.883621i
\(299\) 1.61177e9i 0.201660i
\(300\) 0 0
\(301\) −1.25688e10 −1.53119
\(302\) −6.14209e9 6.10296e9i −0.738394 0.733690i
\(303\) −2.69588e10 −3.19838
\(304\) 7.82685e7 + 6.12266e9i 0.00916417 + 0.716879i
\(305\) 0 0
\(306\) −1.41806e10 1.40903e10i −1.61737 1.60706i
\(307\) −1.74109e10 −1.96005 −0.980026 0.198868i \(-0.936273\pi\)
−0.980026 + 0.198868i \(0.936273\pi\)
\(308\) −1.72468e10 + 1.10232e8i −1.91649 + 0.0122491i
\(309\) −1.48835e10 −1.63257
\(310\) 0 0
\(311\) 8.61717e9i 0.921135i 0.887625 + 0.460567i \(0.152354\pi\)
−0.887625 + 0.460567i \(0.847646\pi\)
\(312\) −4.30791e9 + 4.39131e9i −0.454620 + 0.463421i
\(313\) 9.76978e9i 1.01791i 0.860794 + 0.508953i \(0.169967\pi\)
−0.860794 + 0.508953i \(0.830033\pi\)
\(314\) 7.30907e9 + 7.26250e9i 0.751871 + 0.747081i
\(315\) 0 0
\(316\) −1.13293e10 + 7.24107e7i −1.13620 + 0.00726197i
\(317\) 6.57561e9i 0.651177i −0.945512 0.325589i \(-0.894438\pi\)
0.945512 0.325589i \(-0.105562\pi\)
\(318\) −8.82948e9 8.77322e9i −0.863429 0.857928i
\(319\) 7.11872e8i 0.0687447i
\(320\) 0 0
\(321\) 7.12973e9 0.671510
\(322\) −6.54804e9 + 6.59002e9i −0.609099 + 0.613004i
\(323\) 9.49884e9 0.872691
\(324\) −4.47536e7 7.00211e9i −0.00406114 0.635402i
\(325\) 0 0
\(326\) −7.60787e9 + 7.65665e9i −0.673586 + 0.677905i
\(327\) 2.76147e10 2.41518
\(328\) 1.12252e10 + 1.10120e10i 0.969837 + 0.951417i
\(329\) −1.38400e10 −1.18128
\(330\) 0 0
\(331\) 2.32794e10i 1.93936i −0.244370 0.969682i \(-0.578581\pi\)
0.244370 0.969682i \(-0.421419\pi\)
\(332\) 2.48411e7 + 3.88661e9i 0.00204464 + 0.319903i
\(333\) 1.41301e10i 1.14913i
\(334\) −5.13751e9 + 5.17045e9i −0.412826 + 0.415473i
\(335\) 0 0
\(336\) 3.54540e10 4.53223e8i 2.78168 0.0355594i
\(337\) 1.99301e9i 0.154522i −0.997011 0.0772610i \(-0.975383\pi\)
0.997011 0.0772610i \(-0.0246175\pi\)
\(338\) −7.84999e9 + 7.90033e9i −0.601454 + 0.605311i
\(339\) 9.37275e9i 0.709690i
\(340\) 0 0
\(341\) −2.36924e9 −0.175223
\(342\) 1.30322e10 + 1.29491e10i 0.952603 + 0.946534i
\(343\) 1.57565e10 1.13837
\(344\) −9.32619e9 9.14906e9i −0.665994 0.653345i
\(345\) 0 0
\(346\) 1.09451e10 + 1.08754e10i 0.763688 + 0.758823i
\(347\) 6.31855e9 0.435813 0.217906 0.975970i \(-0.430077\pi\)
0.217906 + 0.975970i \(0.430077\pi\)
\(348\) −9.35350e6 1.46344e9i −0.000637760 0.0997834i
\(349\) 1.87010e9 0.126056 0.0630279 0.998012i \(-0.479924\pi\)
0.0630279 + 0.998012i \(0.479924\pi\)
\(350\) 0 0
\(351\) 8.60323e9i 0.566804i
\(352\) −1.28776e10 1.24725e10i −0.838808 0.812422i
\(353\) 3.02132e10i 1.94580i −0.231225 0.972900i \(-0.574273\pi\)
0.231225 0.972900i \(-0.425727\pi\)
\(354\) 2.63457e10 + 2.61779e10i 1.67763 + 1.66695i
\(355\) 0 0
\(356\) −8.88017e7 1.38938e10i −0.00552868 0.865012i
\(357\) 5.50041e10i 3.38627i
\(358\) 1.15048e10 + 1.14315e10i 0.700399 + 0.695937i
\(359\) 1.82078e10i 1.09618i −0.836421 0.548088i \(-0.815356\pi\)
0.836421 0.548088i \(-0.184644\pi\)
\(360\) 0 0
\(361\) 8.25401e9 0.486000
\(362\) −1.70862e9 + 1.71958e9i −0.0994974 + 0.100135i
\(363\) 1.07019e10 0.616359
\(364\) −1.10346e10 + 7.05269e7i −0.628565 + 0.00401744i
\(365\) 0 0
\(366\) −7.98972e9 + 8.04094e9i −0.445253 + 0.448108i
\(367\) −1.46648e10 −0.808372 −0.404186 0.914677i \(-0.632445\pi\)
−0.404186 + 0.914677i \(0.632445\pi\)
\(368\) −9.65570e9 + 1.23433e8i −0.526493 + 0.00673037i
\(369\) 4.71799e10 2.54479
\(370\) 0 0
\(371\) 2.23278e10i 1.17855i
\(372\) 4.87059e9 3.11301e7i 0.254337 0.00162558i
\(373\) 1.41277e10i 0.729857i −0.931036 0.364928i \(-0.881094\pi\)
0.931036 0.364928i \(-0.118906\pi\)
\(374\) −1.96022e10 + 1.97279e10i −1.00189 + 1.00831i
\(375\) 0 0
\(376\) −1.02694e10 1.00744e10i −0.513800 0.504042i
\(377\) 4.55458e8i 0.0225467i
\(378\) 3.49518e10 3.51759e10i 1.71199 1.72297i
\(379\) 3.94069e9i 0.190992i −0.995430 0.0954960i \(-0.969556\pi\)
0.995430 0.0954960i \(-0.0304437\pi\)
\(380\) 0 0
\(381\) 4.79145e10 2.27388
\(382\) 6.19910e9 + 6.15961e9i 0.291122 + 0.289267i
\(383\) 3.43063e10 1.59433 0.797166 0.603760i \(-0.206332\pi\)
0.797166 + 0.603760i \(0.206332\pi\)
\(384\) 2.66371e10 + 2.54712e10i 1.22507 + 1.17145i
\(385\) 0 0
\(386\) 1.72523e10 + 1.71424e10i 0.777137 + 0.772185i
\(387\) −3.91983e10 −1.74752
\(388\) −3.19477e10 + 2.04192e8i −1.40965 + 0.00900972i
\(389\) −4.14309e8 −0.0180936 −0.00904681 0.999959i \(-0.502880\pi\)
−0.00904681 + 0.999959i \(0.502880\pi\)
\(390\) 0 0
\(391\) 1.49801e10i 0.640924i
\(392\) 2.85474e10 + 2.80052e10i 1.20899 + 1.18603i
\(393\) 2.04837e10i 0.858692i
\(394\) −2.25601e10 2.24163e10i −0.936171 0.930207i
\(395\) 0 0
\(396\) −5.37876e10 + 3.43780e8i −2.18726 + 0.0139798i
\(397\) 2.25453e10i 0.907598i 0.891104 + 0.453799i \(0.149932\pi\)
−0.891104 + 0.453799i \(0.850068\pi\)
\(398\) 1.91511e10 + 1.90291e10i 0.763240 + 0.758377i
\(399\) 5.05494e10i 1.99446i
\(400\) 0 0
\(401\) −2.53666e10 −0.981037 −0.490519 0.871431i \(-0.663193\pi\)
−0.490519 + 0.871431i \(0.663193\pi\)
\(402\) 1.63132e10 1.64178e10i 0.624648 0.628653i
\(403\) −1.51584e9 −0.0574691
\(404\) −3.21270e8 5.02657e10i −0.0120599 1.88689i
\(405\) 0 0
\(406\) 1.85036e9 1.86222e9i 0.0681007 0.0685373i
\(407\) 1.96577e10 0.716399
\(408\) 4.00384e10 4.08135e10i 1.44489 1.47287i
\(409\) −1.47057e10 −0.525523 −0.262761 0.964861i \(-0.584633\pi\)
−0.262761 + 0.964861i \(0.584633\pi\)
\(410\) 0 0
\(411\) 8.31554e10i 2.91423i
\(412\) −1.77367e8 2.77508e10i −0.00615581 0.963132i
\(413\) 6.66225e10i 2.28992i
\(414\) −2.04213e10 + 2.05523e10i −0.695156 + 0.699613i
\(415\) 0 0
\(416\) −8.23909e9 7.97992e9i −0.275110 0.266456i
\(417\) 7.12968e10i 2.35790i
\(418\) 1.80147e10 1.81302e10i 0.590095 0.593879i
\(419\) 7.30915e9i 0.237143i 0.992946 + 0.118572i \(0.0378315\pi\)
−0.992946 + 0.118572i \(0.962168\pi\)
\(420\) 0 0
\(421\) −4.09140e10 −1.30240 −0.651199 0.758907i \(-0.725734\pi\)
−0.651199 + 0.758907i \(0.725734\pi\)
\(422\) 4.03189e10 + 4.00621e10i 1.27133 + 1.26323i
\(423\) −4.31627e10 −1.34818
\(424\) 1.62528e10 1.65674e10i 0.502879 0.512615i
\(425\) 0 0
\(426\) −2.89797e10 2.87951e10i −0.879946 0.874340i
\(427\) −2.03337e10 −0.611654
\(428\) 8.49655e7 + 1.32936e10i 0.00253202 + 0.396158i
\(429\) 2.56770e10 0.758080
\(430\) 0 0
\(431\) 3.95128e9i 0.114506i 0.998360 + 0.0572531i \(0.0182342\pi\)
−0.998360 + 0.0572531i \(0.981766\pi\)
\(432\) 5.15396e10 6.58852e8i 1.47981 0.0189170i
\(433\) 2.88725e10i 0.821358i −0.911780 0.410679i \(-0.865292\pi\)
0.911780 0.410679i \(-0.134708\pi\)
\(434\) 6.19780e9 + 6.15831e9i 0.174694 + 0.173581i
\(435\) 0 0
\(436\) 3.29086e8 + 5.14885e10i 0.00910676 + 1.42484i
\(437\) 1.37669e10i 0.377493i
\(438\) −3.71707e9 3.69339e9i −0.100996 0.100353i
\(439\) 1.66340e10i 0.447857i 0.974606 + 0.223929i \(0.0718883\pi\)
−0.974606 + 0.223929i \(0.928112\pi\)
\(440\) 0 0
\(441\) 1.19986e11 3.17231
\(442\) −1.25416e10 + 1.26220e10i −0.328596 + 0.330703i
\(443\) 1.61256e10 0.418699 0.209350 0.977841i \(-0.432865\pi\)
0.209350 + 0.977841i \(0.432865\pi\)
\(444\) −4.04116e10 + 2.58288e8i −1.03986 + 0.00664619i
\(445\) 0 0
\(446\) −1.59224e10 + 1.60245e10i −0.402410 + 0.404990i
\(447\) −8.42953e10 −2.11141
\(448\) 1.26756e9 + 6.60997e10i 0.0314670 + 1.64092i
\(449\) −1.31471e10 −0.323478 −0.161739 0.986834i \(-0.551710\pi\)
−0.161739 + 0.986834i \(0.551710\pi\)
\(450\) 0 0
\(451\) 6.56363e10i 1.58649i
\(452\) 1.74758e10 1.11696e8i 0.418682 0.00267598i
\(453\) 7.42999e10i 1.76439i
\(454\) −1.22903e10 + 1.23691e10i −0.289294 + 0.291149i
\(455\) 0 0
\(456\) −3.67958e10 + 3.75081e10i −0.851017 + 0.867493i
\(457\) 6.79985e10i 1.55896i −0.626427 0.779480i \(-0.715484\pi\)
0.626427 0.779480i \(-0.284516\pi\)
\(458\) −2.54653e10 + 2.56286e10i −0.578745 + 0.582456i
\(459\) 7.99597e10i 1.80144i
\(460\) 0 0
\(461\) −2.86783e10 −0.634966 −0.317483 0.948264i \(-0.602838\pi\)
−0.317483 + 0.948264i \(0.602838\pi\)
\(462\) −1.04985e11 1.04316e11i −2.30441 2.28973i
\(463\) 4.22729e9 0.0919894 0.0459947 0.998942i \(-0.485354\pi\)
0.0459947 + 0.998942i \(0.485354\pi\)
\(464\) 2.72852e9 3.48799e7i 0.0588648 0.000752494i
\(465\) 0 0
\(466\) 7.40556e9 + 7.35838e9i 0.157041 + 0.156041i
\(467\) 4.27269e10 0.898325 0.449163 0.893450i \(-0.351722\pi\)
0.449163 + 0.893450i \(0.351722\pi\)
\(468\) −3.44134e10 + 2.19952e8i −0.717372 + 0.00458505i
\(469\) 4.15170e10 0.858093
\(470\) 0 0
\(471\) 8.84167e10i 1.79660i
\(472\) −4.84956e10 + 4.94345e10i −0.977089 + 0.996006i
\(473\) 5.45323e10i 1.08946i
\(474\) −6.89639e10 6.85245e10i −1.36618 1.35748i
\(475\) 0 0
\(476\) 1.02557e11 6.55487e8i 1.99773 0.0127684i
\(477\) 6.96334e10i 1.34507i
\(478\) −5.43996e10 5.40531e10i −1.04204 1.03540i
\(479\) 6.73017e10i 1.27845i −0.769020 0.639225i \(-0.779255\pi\)
0.769020 0.639225i \(-0.220745\pi\)
\(480\) 0 0
\(481\) 1.25770e10 0.234962
\(482\) 5.84604e10 5.88352e10i 1.08311 1.09006i
\(483\) −7.97185e10 −1.46477
\(484\) 1.27535e8 + 1.99540e10i 0.00232406 + 0.363621i
\(485\) 0 0
\(486\) −1.58425e10 + 1.59440e10i −0.283973 + 0.285794i
\(487\) 9.69928e10 1.72434 0.862172 0.506616i \(-0.169104\pi\)
0.862172 + 0.506616i \(0.169104\pi\)
\(488\) −1.50878e10 1.48013e10i −0.266040 0.260988i
\(489\) −9.26214e10 −1.61985
\(490\) 0 0
\(491\) 1.73575e10i 0.298648i 0.988788 + 0.149324i \(0.0477098\pi\)
−0.988788 + 0.149324i \(0.952290\pi\)
\(492\) 8.62414e8 + 1.34933e11i 0.0147182 + 2.30280i
\(493\) 4.23309e9i 0.0716589i
\(494\) 1.15259e10 1.15998e10i 0.193538 0.194779i
\(495\) 0 0
\(496\) 1.16086e8 + 9.08101e9i 0.00191803 + 0.150040i
\(497\) 7.32833e10i 1.20110i
\(498\) −2.35079e10 + 2.36586e10i −0.382205 + 0.384655i
\(499\) 1.42959e10i 0.230573i 0.993332 + 0.115287i \(0.0367787\pi\)
−0.993332 + 0.115287i \(0.963221\pi\)
\(500\) 0 0
\(501\) −6.25462e10 −0.992773
\(502\) 2.74526e10 + 2.72777e10i 0.432284 + 0.429530i
\(503\) 6.90584e10 1.07881 0.539404 0.842047i \(-0.318649\pi\)
0.539404 + 0.842047i \(0.318649\pi\)
\(504\) 1.41599e11 + 1.38910e11i 2.19451 + 2.15283i
\(505\) 0 0
\(506\) 2.85921e10 + 2.84100e10i 0.436158 + 0.433380i
\(507\) −9.55691e10 −1.44639
\(508\) 5.71000e8 + 8.93382e10i 0.00857396 + 1.34147i
\(509\) 5.98939e10 0.892302 0.446151 0.894958i \(-0.352794\pi\)
0.446151 + 0.894958i \(0.352794\pi\)
\(510\) 0 0
\(511\) 9.39964e9i 0.137857i
\(512\) −4.71745e10 + 4.99693e10i −0.686480 + 0.727149i
\(513\) 7.34840e10i 1.06102i
\(514\) 5.96493e10 + 5.92693e10i 0.854581 + 0.849136i
\(515\) 0 0
\(516\) −7.16516e8 1.12106e11i −0.0101071 1.58135i
\(517\) 6.00476e10i 0.840491i
\(518\) −5.14235e10 5.10959e10i −0.714238 0.709687i
\(519\) 1.32401e11i 1.82483i
\(520\) 0 0
\(521\) 2.97388e10 0.403620 0.201810 0.979425i \(-0.435318\pi\)
0.201810 + 0.979425i \(0.435318\pi\)
\(522\) 5.77069e9 5.80770e9i 0.0777224 0.0782207i
\(523\) −3.20935e10 −0.428954 −0.214477 0.976729i \(-0.568805\pi\)
−0.214477 + 0.976729i \(0.568805\pi\)
\(524\) −3.81925e10 + 2.44105e8i −0.506586 + 0.00323781i
\(525\) 0 0
\(526\) 1.40913e10 1.41817e10i 0.184081 0.185261i
\(527\) 1.40885e10 0.182651
\(528\) −1.96640e9 1.53824e11i −0.0253008 1.97919i
\(529\) −5.66001e10 −0.722760
\(530\) 0 0
\(531\) 2.07775e11i 2.61345i
\(532\) −9.42511e10 + 6.02401e8i −1.17663 + 0.00752037i
\(533\) 4.19943e10i 0.520333i
\(534\) 8.40358e10 8.45746e10i 1.03347 1.04010i
\(535\) 0 0
\(536\) 3.08060e10 + 3.02209e10i 0.373229 + 0.366141i
\(537\) 1.39171e11i 1.67360i
\(538\) −6.04876e10 + 6.08755e10i −0.722000 + 0.726630i
\(539\) 1.66923e11i 1.97770i
\(540\) 0 0
\(541\) 3.92268e10 0.457924 0.228962 0.973435i \(-0.426467\pi\)
0.228962 + 0.973435i \(0.426467\pi\)
\(542\) −7.63081e9 7.58219e9i −0.0884247 0.0878613i
\(543\) −2.08015e10 −0.239274
\(544\) 7.65753e10 + 7.41665e10i 0.874366 + 0.846861i
\(545\) 0 0
\(546\) −6.71697e10 6.67418e10i −0.755793 0.750978i
\(547\) 9.39638e10 1.04957 0.524785 0.851235i \(-0.324146\pi\)
0.524785 + 0.851235i \(0.324146\pi\)
\(548\) 1.55046e11 9.90969e8i 1.71925 0.0109885i
\(549\) −6.34147e10 −0.698073
\(550\) 0 0
\(551\) 3.89027e9i 0.0422059i
\(552\) −5.91519e10 5.80285e10i −0.637107 0.625007i
\(553\) 1.74394e11i 1.86480i
\(554\) −9.70541e10 9.64358e10i −1.03033 1.02376i
\(555\) 0 0
\(556\) −1.32935e11 + 8.49650e8i −1.39105 + 0.00889080i
\(557\) 8.98122e10i 0.933071i 0.884503 + 0.466535i \(0.154498\pi\)
−0.884503 + 0.466535i \(0.845502\pi\)
\(558\) 1.93290e10 + 1.92059e10i 0.199376 + 0.198106i
\(559\) 3.48899e10i 0.357316i
\(560\) 0 0
\(561\) −2.38646e11 −2.40936
\(562\) 9.55967e9 9.62097e9i 0.0958292 0.0964436i
\(563\) −1.80533e10 −0.179689 −0.0898446 0.995956i \(-0.528637\pi\)
−0.0898446 + 0.995956i \(0.528637\pi\)
\(564\) −7.88983e8 1.23444e11i −0.00779742 1.21998i
\(565\) 0 0
\(566\) 2.93043e10 2.94922e10i 0.285540 0.287370i
\(567\) 1.07785e11 1.04286
\(568\) 5.33441e10 5.43769e10i 0.512499 0.522421i
\(569\) 6.90947e10 0.659167 0.329584 0.944126i \(-0.393092\pi\)
0.329584 + 0.944126i \(0.393092\pi\)
\(570\) 0 0
\(571\) 7.86073e10i 0.739467i 0.929138 + 0.369733i \(0.120551\pi\)
−0.929138 + 0.369733i \(0.879449\pi\)
\(572\) 3.05995e8 + 4.78757e10i 0.00285844 + 0.447230i
\(573\) 7.49896e10i 0.695637i
\(574\) −1.70607e11 + 1.71701e11i −1.57163 + 1.58170i
\(575\) 0 0
\(576\) 3.95312e9 + 2.06145e11i 0.0359128 + 1.87276i
\(577\) 1.80277e11i 1.62643i −0.581962 0.813216i \(-0.697715\pi\)
0.581962 0.813216i \(-0.302285\pi\)
\(578\) 3.78942e10 3.81371e10i 0.339517 0.341693i
\(579\) 2.08698e11i 1.85697i
\(580\) 0 0
\(581\) −5.98273e10 −0.525043
\(582\) −1.94472e11 1.93233e11i −1.69498 1.68418i
\(583\) −9.68734e10 −0.838553
\(584\) 6.84216e9 6.97462e9i 0.0588223 0.0599611i
\(585\) 0 0
\(586\) 1.34941e11 + 1.34081e11i 1.14433 + 1.13704i
\(587\) 3.62809e9 0.0305581 0.0152790 0.999883i \(-0.495136\pi\)
0.0152790 + 0.999883i \(0.495136\pi\)
\(588\) 2.19325e9 + 3.43154e11i 0.0183476 + 2.87065i
\(589\) −1.29475e10 −0.107578
\(590\) 0 0
\(591\) 2.72906e11i 2.23698i
\(592\) −9.63175e8 7.53457e10i −0.00784185 0.613439i
\(593\) 8.72511e10i 0.705589i −0.935701 0.352795i \(-0.885231\pi\)
0.935701 0.352795i \(-0.114769\pi\)
\(594\) −1.52617e11 1.51645e11i −1.22591 1.21810i
\(595\) 0 0
\(596\) −1.00455e9 1.57172e11i −0.00796137 1.24563i
\(597\) 2.31668e11i 1.82376i
\(598\) 1.82933e10 + 1.81768e10i 0.143050 + 0.142139i
\(599\) 1.90496e10i 0.147972i 0.997259 + 0.0739858i \(0.0235720\pi\)
−0.997259 + 0.0739858i \(0.976428\pi\)
\(600\) 0 0
\(601\) 1.75085e11 1.34200 0.670998 0.741459i \(-0.265866\pi\)
0.670998 + 0.741459i \(0.265866\pi\)
\(602\) 1.41745e11 1.42654e11i 1.07925 1.08617i
\(603\) 1.29479e11 0.979329
\(604\) 1.38535e11 8.85437e8i 1.04090 0.00665289i
\(605\) 0 0
\(606\) 3.04028e11 3.05977e11i 2.25436 2.26881i
\(607\) −1.75308e11 −1.29136 −0.645680 0.763608i \(-0.723426\pi\)
−0.645680 + 0.763608i \(0.723426\pi\)
\(608\) −7.03737e10 6.81600e10i −0.514987 0.498787i
\(609\) 2.25270e10 0.163770
\(610\) 0 0
\(611\) 3.84186e10i 0.275662i
\(612\) 3.19843e11 2.04426e9i 2.27998 0.0145724i
\(613\) 1.26999e10i 0.0899412i −0.998988 0.0449706i \(-0.985681\pi\)
0.998988 0.0449706i \(-0.0143194\pi\)
\(614\) 1.96351e11 1.97610e11i 1.38153 1.39039i
\(615\) 0 0
\(616\) 1.93250e11 1.96991e11i 1.34214 1.36812i
\(617\) 2.29769e11i 1.58544i 0.609586 + 0.792720i \(0.291336\pi\)
−0.609586 + 0.792720i \(0.708664\pi\)
\(618\) 1.67848e11 1.68925e11i 1.15070 1.15808i
\(619\) 1.67400e11i 1.14023i 0.821564 + 0.570116i \(0.193102\pi\)
−0.821564 + 0.570116i \(0.806898\pi\)
\(620\) 0 0
\(621\) −1.15887e11 −0.779237
\(622\) −9.78032e10 9.71801e10i −0.653419 0.649256i
\(623\) 2.13870e11 1.41971
\(624\) −1.25810e9 9.84170e10i −0.00829810 0.649130i
\(625\) 0 0
\(626\) −1.10885e11 1.10179e11i −0.722065 0.717464i
\(627\) 2.19319e11 1.41907
\(628\) −1.64856e11 + 1.05367e9i −1.05990 + 0.00677432i
\(629\) −1.16893e11 −0.746768
\(630\) 0 0
\(631\) 2.92637e9i 0.0184591i 0.999957 + 0.00922957i \(0.00293791\pi\)
−0.999957 + 0.00922957i \(0.997062\pi\)
\(632\) 1.26944e11 1.29402e11i 0.795693 0.811098i
\(633\) 4.87732e11i 3.03785i
\(634\) 7.46319e10 + 7.41564e10i 0.461921 + 0.458978i
\(635\) 0 0
\(636\) 1.99149e11 1.27285e9i 1.21716 0.00777944i
\(637\) 1.06798e11i 0.648642i
\(638\) −8.07961e9 8.02814e9i −0.0487650 0.0484543i
\(639\) 2.28548e11i 1.37080i
\(640\) 0 0
\(641\) −1.15318e11 −0.683071 −0.341535 0.939869i \(-0.610947\pi\)
−0.341535 + 0.939869i \(0.610947\pi\)
\(642\) −8.04055e10 + 8.09210e10i −0.473310 + 0.476345i
\(643\) −4.99010e10 −0.291921 −0.145961 0.989290i \(-0.546627\pi\)
−0.145961 + 0.989290i \(0.546627\pi\)
\(644\) −9.50011e8 1.48638e11i −0.00552313 0.864144i
\(645\) 0 0
\(646\) −1.07123e11 + 1.07810e11i −0.615110 + 0.619054i
\(647\) −5.43112e10 −0.309936 −0.154968 0.987919i \(-0.549527\pi\)
−0.154968 + 0.987919i \(0.549527\pi\)
\(648\) 7.99773e10 + 7.84583e10i 0.453593 + 0.444978i
\(649\) 2.89055e11 1.62930
\(650\) 0 0
\(651\) 7.49739e10i 0.417432i
\(652\) −1.10378e9 1.72696e11i −0.00610788 0.955633i
\(653\) 1.40265e11i 0.771433i −0.922617 0.385716i \(-0.873954\pi\)
0.922617 0.385716i \(-0.126046\pi\)
\(654\) −3.11425e11 + 3.13421e11i −1.70232 + 1.71324i
\(655\) 0 0
\(656\) −2.51576e11 + 3.21600e9i −1.35848 + 0.0173660i
\(657\) 2.93146e10i 0.157334i
\(658\) 1.56081e11 1.57081e11i 0.832617 0.837955i
\(659\) 2.51334e11i 1.33263i 0.745670 + 0.666315i \(0.232129\pi\)
−0.745670 + 0.666315i \(0.767871\pi\)
\(660\) 0 0
\(661\) 1.18006e10 0.0618155 0.0309077 0.999522i \(-0.490160\pi\)
0.0309077 + 0.999522i \(0.490160\pi\)
\(662\) 2.64216e11 + 2.62533e11i 1.37571 + 1.36695i
\(663\) −1.52686e11 −0.790216
\(664\) −4.43924e10 4.35493e10i −0.228369 0.224031i
\(665\) 0 0
\(666\) −1.60374e11 1.59352e11i −0.815150 0.809956i
\(667\) −6.13511e9 −0.0309970
\(668\) −7.45368e8 1.16620e11i −0.00374339 0.585687i
\(669\) −1.93846e11 −0.967724
\(670\) 0 0
\(671\) 8.82220e10i 0.435198i
\(672\) −3.94688e11 + 4.07507e11i −1.93543 + 1.99829i
\(673\) 3.32886e11i 1.62269i 0.584567 + 0.811345i \(0.301264\pi\)
−0.584567 + 0.811345i \(0.698736\pi\)
\(674\) 2.26203e10 + 2.24762e10i 0.109612 + 0.108914i
\(675\) 0 0
\(676\) −1.13890e9 1.78192e11i −0.00545381 0.853299i
\(677\) 1.55980e11i 0.742530i −0.928527 0.371265i \(-0.878924\pi\)
0.928527 0.371265i \(-0.121076\pi\)
\(678\) 1.06379e11 + 1.05701e11i 0.503427 + 0.500220i
\(679\) 4.91776e11i 2.31360i
\(680\) 0 0
\(681\) −1.49627e11 −0.695701
\(682\) 2.67191e10 2.68904e10i 0.123505 0.124297i
\(683\) −2.38756e10 −0.109716 −0.0548581 0.998494i \(-0.517471\pi\)
−0.0548581 + 0.998494i \(0.517471\pi\)
\(684\) −2.93940e11 + 1.87870e9i −1.34287 + 0.00858289i
\(685\) 0 0
\(686\) −1.77694e11 + 1.78833e11i −0.802371 + 0.807516i
\(687\) −3.10025e11 −1.39178
\(688\) 2.09016e11 2.67194e9i 0.932880 0.0119254i
\(689\) −6.19799e10 −0.275026
\(690\) 0 0
\(691\) 3.49556e11i 1.53322i 0.642113 + 0.766610i \(0.278058\pi\)
−0.642113 + 0.766610i \(0.721942\pi\)
\(692\) −2.46867e11 + 1.57784e9i −1.07656 + 0.00688078i
\(693\) 8.27962e11i 3.58986i
\(694\) −7.12574e10 + 7.17143e10i −0.307180 + 0.309149i
\(695\) 0 0
\(696\) 1.67153e10 + 1.63978e10i 0.0712322 + 0.0698793i
\(697\) 3.90301e11i 1.65374i
\(698\) −2.10900e10 + 2.12253e10i −0.0888496 + 0.0894193i
\(699\) 8.95839e10i 0.375250i
\(700\) 0 0
\(701\) −2.57887e10 −0.106796 −0.0533982 0.998573i \(-0.517005\pi\)
−0.0533982 + 0.998573i \(0.517005\pi\)
\(702\) −9.76450e10 9.70229e10i −0.402070 0.399508i
\(703\) 1.07426e11 0.439834
\(704\) 2.86787e11 5.49954e9i 1.16753 0.0223891i
\(705\) 0 0
\(706\) 3.42914e11 + 3.40730e11i 1.38028 + 1.37148i
\(707\) 7.73749e11 3.09686
\(708\) −5.94228e11 + 3.79797e9i −2.36494 + 0.0151154i
\(709\) 1.18322e11 0.468251 0.234126 0.972206i \(-0.424777\pi\)
0.234126 + 0.972206i \(0.424777\pi\)
\(710\) 0 0
\(711\) 5.43882e11i 2.12827i
\(712\) 1.58694e11 + 1.55680e11i 0.617504 + 0.605776i
\(713\) 2.04187e10i 0.0790079i
\(714\) 6.24285e11 + 6.20308e11i 2.40210 + 2.38679i
\(715\) 0 0
\(716\) −2.59490e11 + 1.65851e9i −0.987343 + 0.00631055i
\(717\) 6.58064e11i 2.48996i
\(718\) 2.06655e11 + 2.05339e11i 0.777587 + 0.772632i
\(719\) 1.28179e11i 0.479624i −0.970819 0.239812i \(-0.922914\pi\)
0.970819 0.239812i \(-0.0770858\pi\)
\(720\) 0 0
\(721\) 4.27173e11 1.58075
\(722\) −9.30846e10 + 9.36814e10i −0.342554 + 0.344750i
\(723\) 7.11721e11 2.60469
\(724\) −2.47893e8 3.87850e10i −0.000902213 0.141159i
\(725\) 0 0
\(726\) −1.20690e11 + 1.21464e11i −0.434437 + 0.437222i
\(727\) −2.11824e11 −0.758295 −0.379148 0.925336i \(-0.623783\pi\)
−0.379148 + 0.925336i \(0.623783\pi\)
\(728\) 1.23642e11 1.26036e11i 0.440190 0.448712i
\(729\) −3.72333e11 −1.31832
\(730\) 0 0
\(731\) 3.24272e11i 1.13564i
\(732\) −1.15917e9 1.81363e11i −0.00403743 0.631692i
\(733\) 2.18401e11i 0.756552i −0.925693 0.378276i \(-0.876517\pi\)
0.925693 0.378276i \(-0.123483\pi\)
\(734\) 1.65382e11 1.66442e11i 0.569776 0.573429i
\(735\) 0 0
\(736\) 1.07491e11 1.10982e11i 0.366321 0.378218i
\(737\) 1.80129e11i 0.610541i
\(738\) −5.32071e11 + 5.35483e11i −1.79368 + 1.80518i
\(739\) 1.87281e11i 0.627936i 0.949433 + 0.313968i \(0.101659\pi\)
−0.949433 + 0.313968i \(0.898341\pi\)
\(740\) 0 0
\(741\) 1.40321e11 0.465424
\(742\) 2.53416e11 + 2.51801e11i 0.836023 + 0.830696i
\(743\) −4.43366e11 −1.45481 −0.727406 0.686207i \(-0.759274\pi\)
−0.727406 + 0.686207i \(0.759274\pi\)
\(744\) −5.45747e10 + 5.56313e10i −0.178115 + 0.181563i
\(745\) 0 0
\(746\) 1.60347e11 + 1.59326e11i 0.517733 + 0.514435i
\(747\) −1.86583e11 −0.599224
\(748\) −2.84396e9 4.44963e11i −0.00908484 1.42141i
\(749\) −2.04631e11 −0.650196
\(750\) 0 0
\(751\) 1.63129e11i 0.512827i −0.966567 0.256414i \(-0.917459\pi\)
0.966567 0.256414i \(-0.0825409\pi\)
\(752\) 2.30155e11 2.94217e9i 0.719697 0.00920018i
\(753\) 3.32090e11i 1.03294i
\(754\) −5.16936e9 5.13643e9i −0.0159938 0.0158919i
\(755\) 0 0
\(756\) 5.07092e9 + 7.93391e11i 0.0155238 + 2.42885i
\(757\) 8.66867e10i 0.263979i 0.991251 + 0.131989i \(0.0421365\pi\)
−0.991251 + 0.131989i \(0.957864\pi\)
\(758\) 4.47260e10 + 4.44411e10i 0.135483 + 0.134619i
\(759\) 3.45875e11i 1.04220i
\(760\) 0 0
\(761\) 3.59912e11 1.07314 0.536571 0.843855i \(-0.319719\pi\)
0.536571 + 0.843855i \(0.319719\pi\)
\(762\) −5.40355e11 + 5.43820e11i −1.60273 + 1.61300i
\(763\) −7.92573e11 −2.33852
\(764\) −1.39821e11 + 8.93656e8i −0.410391 + 0.00262299i
\(765\) 0 0
\(766\) −3.86889e11 + 3.89370e11i −1.12375 + 1.13096i
\(767\) 1.84938e11 0.534373
\(768\) −5.89493e11 + 1.50739e10i −1.69447 + 0.0433293i
\(769\) 6.61724e11 1.89222 0.946110 0.323845i \(-0.104976\pi\)
0.946110 + 0.323845i \(0.104976\pi\)
\(770\) 0 0
\(771\) 7.21569e11i 2.04202i
\(772\) −3.89125e11 + 2.48707e9i −1.09552 + 0.00700195i
\(773\) 2.24564e11i 0.628958i 0.949264 + 0.314479i \(0.101830\pi\)
−0.949264 + 0.314479i \(0.898170\pi\)
\(774\) 4.42059e11 4.44893e11i 1.23173 1.23963i
\(775\) 0 0
\(776\) 3.57972e11 3.64903e11i 0.987194 1.00631i
\(777\) 6.22063e11i 1.70667i
\(778\) 4.67236e9 4.70232e9i 0.0127532 0.0128349i
\(779\) 3.58691e11i 0.974027i
\(780\) 0 0
\(781\) −3.17954e11 −0.854594
\(782\) −1.70021e11 1.68938e11i −0.454648 0.451751i
\(783\) 3.27477e10 0.0871231
\(784\) −6.39797e11 + 8.17879e9i −1.69347 + 0.0216483i
\(785\) 0 0
\(786\) −2.32486e11 2.31004e11i −0.609124 0.605243i
\(787\) −6.78642e11 −1.76906 −0.884528 0.466486i \(-0.845520\pi\)
−0.884528 + 0.466486i \(0.845520\pi\)
\(788\) 5.08842e11 3.25224e9i 1.31971 0.00843485i
\(789\) 1.71553e11 0.442682
\(790\) 0 0
\(791\) 2.69008e11i 0.687163i
\(792\) 6.02687e11 6.14355e11i 1.53176 1.56142i
\(793\) 5.64447e10i 0.142735i
\(794\) −2.55884e11 2.54254e11i −0.643816 0.639714i
\(795\) 0 0
\(796\) −4.31952e11 + 2.76080e9i −1.07593 + 0.00687674i
\(797\) 2.55700e11i 0.633720i 0.948472 + 0.316860i \(0.102628\pi\)
−0.948472 + 0.316860i \(0.897372\pi\)
\(798\) −5.73726e11 5.70071e11i −1.41479 1.40578i
\(799\) 3.57068e11i 0.876121i
\(800\) 0 0
\(801\) 6.66996e11 1.62029
\(802\) 2.86072e11 2.87906e11i 0.691478 0.695911i
\(803\) −4.07822e10 −0.0980863
\(804\) 2.36677e9 + 3.70303e11i 0.00566412 + 0.886204i
\(805\) 0 0
\(806\) 1.70949e10 1.72045e10i 0.0405067 0.0407664i
\(807\) −7.36401e11 −1.73628
\(808\) 5.74129e11 + 5.63224e11i 1.34699 + 1.32141i
\(809\) −4.12911e10 −0.0963968 −0.0481984 0.998838i \(-0.515348\pi\)
−0.0481984 + 0.998838i \(0.515348\pi\)
\(810\) 0 0
\(811\) 2.06089e11i 0.476399i −0.971216 0.238200i \(-0.923443\pi\)
0.971216 0.238200i \(-0.0765573\pi\)
\(812\) 2.68456e8 + 4.20024e10i 0.000617517 + 0.0966162i
\(813\) 9.23087e10i 0.211291i
\(814\) −2.21690e11 + 2.23111e11i −0.504949 + 0.508187i
\(815\) 0 0
\(816\) 1.16930e10 + 9.14702e11i 0.0263734 + 2.06309i
\(817\) 2.98010e11i 0.668872i
\(818\) 1.65843e11 1.66907e11i 0.370411 0.372786i
\(819\) 5.29732e11i 1.17739i
\(820\) 0 0
\(821\) 8.40243e11 1.84941 0.924703 0.380688i \(-0.124313\pi\)
0.924703 + 0.380688i \(0.124313\pi\)
\(822\) 9.43798e11 + 9.37785e11i 2.06724 + 2.05407i
\(823\) −3.94949e11 −0.860878 −0.430439 0.902620i \(-0.641641\pi\)
−0.430439 + 0.902620i \(0.641641\pi\)
\(824\) 3.16966e11 + 3.10946e11i 0.687549 + 0.674491i
\(825\) 0 0
\(826\) −7.56152e11 7.51334e11i −1.62438 1.61404i
\(827\) −3.63473e11 −0.777051 −0.388526 0.921438i \(-0.627016\pi\)
−0.388526 + 0.921438i \(0.627016\pi\)
\(828\) −2.96279e9 4.63556e11i −0.00630347 0.986236i
\(829\) 4.62310e11 0.978847 0.489424 0.872046i \(-0.337207\pi\)
0.489424 + 0.872046i \(0.337207\pi\)
\(830\) 0 0
\(831\) 1.17405e12i 2.46197i
\(832\) 1.83487e11 3.51862e9i 0.382923 0.00734310i
\(833\) 9.92595e11i 2.06154i
\(834\) −8.09205e11 8.04050e11i −1.67261 1.66195i
\(835\) 0 0
\(836\) 2.61364e9 + 4.08927e11i 0.00535081 + 0.837184i
\(837\) 1.08990e11i 0.222067i
\(838\) −8.29574e10 8.24289e10i −0.168221 0.167149i
\(839\) 1.39033e11i 0.280588i −0.990110 0.140294i \(-0.955195\pi\)
0.990110 0.140294i \(-0.0448049\pi\)
\(840\) 0 0
\(841\) −4.98513e11 −0.996534
\(842\) 4.61407e11 4.64366e11i 0.917986 0.923872i
\(843\) 1.16383e11 0.230452
\(844\) −9.09393e11 + 5.81234e9i −1.79218 + 0.0114546i
\(845\) 0 0
\(846\) 4.86767e11 4.89888e11i 0.950254 0.956347i
\(847\) −3.07156e11 −0.596795
\(848\) 4.74654e9 + 3.71305e11i 0.00917896 + 0.718037i
\(849\) 3.56763e11 0.686672
\(850\) 0 0
\(851\) 1.69415e11i 0.323024i
\(852\) 6.53638e11 4.17769e9i 1.24045 0.00792826i
\(853\) 2.95120e11i 0.557446i 0.960372 + 0.278723i \(0.0899111\pi\)
−0.960372 + 0.278723i \(0.910089\pi\)
\(854\) 2.29314e11 2.30784e11i 0.431120 0.433885i
\(855\) 0 0
\(856\) −1.51838e11 1.48954e11i −0.282804 0.277433i
\(857\) 2.93094e11i 0.543355i 0.962388 + 0.271678i \(0.0875784\pi\)
−0.962388 + 0.271678i \(0.912422\pi\)
\(858\) −2.89572e11 + 2.91429e11i −0.534328 + 0.537754i
\(859\) 5.58133e11i 1.02510i 0.858658 + 0.512549i \(0.171299\pi\)
−0.858658 + 0.512549i \(0.828701\pi\)
\(860\) 0 0
\(861\) −2.07704e12 −3.77949
\(862\) −4.48463e10 4.45605e10i −0.0812264 0.0807089i
\(863\) 3.25698e11 0.587181 0.293590 0.955931i \(-0.405150\pi\)
0.293590 + 0.955931i \(0.405150\pi\)
\(864\) −5.73760e11 + 5.92395e11i −1.02962 + 1.06306i
\(865\) 0 0
\(866\) 3.27697e11 + 3.25609e11i 0.582641 + 0.578929i
\(867\) 4.61339e11 0.816477
\(868\) −1.39791e11 + 8.93469e8i −0.246264 + 0.00157398i
\(869\) −7.56643e11 −1.32682
\(870\) 0 0
\(871\) 1.15247e11i 0.200243i
\(872\) −5.88096e11 5.76927e11i −1.01714 0.997826i
\(873\) 1.53370e12i 2.64048i
\(874\) 1.56251e11 + 1.55256e11i 0.267780 + 0.266074i
\(875\) 0 0
\(876\) 8.38385e10 5.35849e8i 0.142373 0.000909969i
\(877\) 2.02891e11i 0.342976i −0.985186 0.171488i \(-0.945143\pi\)
0.985186 0.171488i \(-0.0548575\pi\)
\(878\) −1.88793e11 1.87590e11i −0.317693 0.315669i
\(879\) 1.63236e12i 2.73439i
\(880\) 0 0
\(881\) −6.22197e10 −0.103282 −0.0516409 0.998666i \(-0.516445\pi\)
−0.0516409 + 0.998666i \(0.516445\pi\)
\(882\) −1.35314e12 + 1.36181e12i −2.23598 + 2.25032i
\(883\) 7.69290e10 0.126546 0.0632729 0.997996i \(-0.479846\pi\)
0.0632729 + 0.997996i \(0.479846\pi\)
\(884\) −1.81957e9 2.84689e11i −0.00297962 0.466188i
\(885\) 0 0
\(886\) −1.81857e11 + 1.83023e11i −0.295117 + 0.297010i
\(887\) 7.30650e10 0.118036 0.0590180 0.998257i \(-0.481203\pi\)
0.0590180 + 0.998257i \(0.481203\pi\)
\(888\) 4.52810e11 4.61576e11i 0.728222 0.742321i
\(889\) −1.37520e12 −2.20170
\(890\) 0 0
\(891\) 4.67645e11i 0.742003i
\(892\) −2.31007e9 3.61432e11i −0.00364893 0.570909i
\(893\) 3.28150e11i 0.516020i
\(894\) 9.50640e11 9.56736e11i 1.48822 1.49776i
\(895\) 0 0
\(896\) −7.64514e11 7.31053e11i −1.18619 1.13427i
\(897\) 2.21291e11i 0.341818i
\(898\) 1.48266e11 1.49217e11i 0.228001 0.229463i
\(899\) 5.76996e9i 0.00883353i
\(900\) 0 0
\(901\) 5.76050e11 0.874100
\(902\) 7.44959e11 + 7.40213e11i 1.12540 + 1.11823i
\(903\) 1.72566e12 2.59540
\(904\) −1.95816e11 + 1.99607e11i −0.293207 + 0.298883i
\(905\) 0 0
\(906\) 8.43290e11 + 8.37917e11i 1.25160 + 1.24362i
\(907\) 7.63733e11 1.12853 0.564264 0.825594i \(-0.309160\pi\)
0.564264 + 0.825594i \(0.309160\pi\)
\(908\) −1.78312e9 2.78985e11i −0.00262324 0.410429i
\(909\) 2.41308e12 3.53441
\(910\) 0 0
\(911\) 6.04985e11i 0.878357i 0.898400 + 0.439178i \(0.144730\pi\)
−0.898400 + 0.439178i \(0.855270\pi\)
\(912\) −1.07460e10 8.40623e11i −0.0155335 1.21513i
\(913\) 2.59573e11i 0.373573i
\(914\) 7.71770e11 + 7.66853e11i 1.10587 + 1.09882i
\(915\) 0 0
\(916\) −3.69459e9 5.78053e11i −0.00524789 0.821080i
\(917\) 5.87904e11i 0.831436i
\(918\) 9.07527e11 + 9.01745e11i 1.27788 + 1.26974i
\(919\) 1.09773e12i 1.53898i −0.638657 0.769492i \(-0.720510\pi\)
0.638657 0.769492i \(-0.279490\pi\)
\(920\) 0 0
\(921\) 2.39046e12 3.32233
\(922\) 3.23420e11 3.25493e11i 0.447551 0.450421i
\(923\) −2.03428e11 −0.280287
\(924\) 2.36794e12 1.51345e10i 3.24850 0.0207626i
\(925\) 0 0
\(926\) −4.76732e10 + 4.79789e10i −0.0648381 + 0.0652539i
\(927\) 1.33222e12 1.80408
\(928\) −3.03750e10 + 3.13616e10i −0.0409567 + 0.0422869i
\(929\) −5.68272e11 −0.762945 −0.381473 0.924380i \(-0.624583\pi\)
−0.381473 + 0.924380i \(0.624583\pi\)
\(930\) 0 0
\(931\) 9.12208e11i 1.21421i
\(932\) −1.67032e11 + 1.06758e9i −0.221379 + 0.00141493i
\(933\) 1.18311e12i 1.56135i
\(934\) −4.81852e11 + 4.84942e11i −0.633179 + 0.637238i
\(935\) 0 0
\(936\) 3.85601e11 3.93066e11i 0.502383 0.512109i
\(937\) 1.49600e11i 0.194076i 0.995281 + 0.0970382i \(0.0309369\pi\)
−0.995281 + 0.0970382i \(0.969063\pi\)
\(938\) −4.68207e11 + 4.71209e11i −0.604821 + 0.608699i
\(939\) 1.34136e12i 1.72537i
\(940\) 0 0
\(941\) −5.28765e11 −0.674379 −0.337190 0.941437i \(-0.609476\pi\)
−0.337190 + 0.941437i \(0.609476\pi\)
\(942\) −1.00351e12 9.97119e11i −1.27444 1.26632i
\(943\) 5.65671e11 0.715348
\(944\) −1.41629e10 1.10791e12i −0.0178346 1.39514i
\(945\) 0 0
\(946\) −6.18931e11 6.14988e11i −0.772819 0.767896i
\(947\) −9.04370e11 −1.12447 −0.562233 0.826979i \(-0.690057\pi\)
−0.562233 + 0.826979i \(0.690057\pi\)
\(948\) 1.55548e12 9.94176e9i 1.92589 0.0123092i
\(949\) −2.60926e10 −0.0321701
\(950\) 0 0
\(951\) 9.02811e11i 1.10376i
\(952\) −1.14915e12 + 1.17139e12i −1.39903 + 1.42612i
\(953\) 5.71895e11i 0.693337i 0.937988 + 0.346669i \(0.112687\pi\)
−0.937988 + 0.346669i \(0.887313\pi\)
\(954\) 7.90326e11 + 7.85291e11i 0.954141 + 0.948062i
\(955\) 0 0
\(956\) 1.22698e12 7.84220e9i 1.46895 0.00938872i
\(957\) 9.77379e10i 0.116524i
\(958\) 7.63861e11 + 7.58994e11i 0.906885 + 0.901107i
\(959\) 2.38665e12i 2.82173i
\(960\) 0 0
\(961\) 8.33688e11 0.977484
\(962\) −1.41838e11 + 1.42747e11i −0.165612 + 0.166674i
\(963\) −6.38181e11 −0.742060
\(964\) 8.48163e9 + 1.32703e12i 0.00982135 + 1.53664i
\(965\) 0 0
\(966\) 8.99025e11 9.04790e11i 1.03244 1.03906i
\(967\) 9.92056e11 1.13457 0.567284 0.823522i \(-0.307994\pi\)
0.567284 + 0.823522i \(0.307994\pi\)
\(968\) −2.27913e11 2.23584e11i −0.259577 0.254647i
\(969\) −1.30416e12 −1.47923
\(970\) 0 0
\(971\) 4.62553e11i 0.520336i 0.965563 + 0.260168i \(0.0837780\pi\)
−0.965563 + 0.260168i \(0.916222\pi\)
\(972\) −2.29848e9 3.59618e11i −0.00257499 0.402880i
\(973\) 2.04630e12i 2.28306i
\(974\) −1.09384e12 + 1.10085e12i −1.21539 + 1.22319i
\(975\) 0 0
\(976\) 3.38145e11 4.32264e9i 0.372652 0.00476376i
\(977\) 1.35557e11i 0.148780i 0.997229 + 0.0743899i \(0.0237009\pi\)
−0.997229 + 0.0743899i \(0.976299\pi\)
\(978\) 1.04454e12 1.05123e12i 1.14174 1.14906i
\(979\) 9.27919e11i 1.01013i
\(980\) 0 0
\(981\) −2.47179e12 −2.66892
\(982\) −1.97004e11 1.95749e11i −0.211850 0.210500i
\(983\) −1.95656e10 −0.0209546 −0.0104773 0.999945i \(-0.503335\pi\)
−0.0104773 + 0.999945i \(0.503335\pi\)
\(984\) −1.54118e12 1.51191e12i −1.64390 1.61267i
\(985\) 0 0
\(986\) 4.80448e10 + 4.77387e10i 0.0508322 + 0.0505083i
\(987\) 1.90019e12 2.00230
\(988\) 1.67221e9 + 2.61633e11i 0.00175494 + 0.274577i
\(989\) −4.69975e11 −0.491235
\(990\) 0 0
\(991\) 4.63152e11i 0.480208i 0.970747 + 0.240104i \(0.0771815\pi\)
−0.970747 + 0.240104i \(0.922818\pi\)
\(992\) −1.04377e11 1.01093e11i −0.107785 0.104394i
\(993\) 3.19619e12i 3.28727i
\(994\) 8.31751e11 + 8.26452e11i 0.852016 + 0.846588i
\(995\) 0 0
\(996\) −3.41060e9 5.33620e11i −0.00346572 0.542244i
\(997\) 5.69988e11i 0.576879i −0.957498 0.288439i \(-0.906864\pi\)
0.957498 0.288439i \(-0.0931364\pi\)
\(998\) −1.62256e11 1.61222e11i −0.163560 0.162518i
\(999\) 9.04296e11i 0.907922i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 100.9.d.c.99.8 32
4.3 odd 2 inner 100.9.d.c.99.26 32
5.2 odd 4 100.9.b.d.51.5 16
5.3 odd 4 20.9.b.a.11.12 yes 16
5.4 even 2 inner 100.9.d.c.99.25 32
15.8 even 4 180.9.c.a.91.5 16
20.3 even 4 20.9.b.a.11.11 16
20.7 even 4 100.9.b.d.51.6 16
20.19 odd 2 inner 100.9.d.c.99.7 32
40.3 even 4 320.9.b.d.191.2 16
40.13 odd 4 320.9.b.d.191.15 16
60.23 odd 4 180.9.c.a.91.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.9.b.a.11.11 16 20.3 even 4
20.9.b.a.11.12 yes 16 5.3 odd 4
100.9.b.d.51.5 16 5.2 odd 4
100.9.b.d.51.6 16 20.7 even 4
100.9.d.c.99.7 32 20.19 odd 2 inner
100.9.d.c.99.8 32 1.1 even 1 trivial
100.9.d.c.99.25 32 5.4 even 2 inner
100.9.d.c.99.26 32 4.3 odd 2 inner
180.9.c.a.91.5 16 15.8 even 4
180.9.c.a.91.6 16 60.23 odd 4
320.9.b.d.191.2 16 40.3 even 4
320.9.b.d.191.15 16 40.13 odd 4