Properties

Label 320.9.b.d.191.15
Level $320$
Weight $9$
Character 320.191
Analytic conductor $130.361$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [320,9,Mod(191,320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(320, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("320.191"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 320.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-38800] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(130.361155220\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 5 x^{15} + 26 x^{14} - 834 x^{13} + 4390 x^{12} - 61783 x^{11} + 466168 x^{10} + \cdots + 206161212459445 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{120}\cdot 5^{16} \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 191.15
Root \(-6.29294 + 5.63875i\) of defining polynomial
Character \(\chi\) \(=\) 320.191
Dual form 320.9.b.d.191.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+137.297i q^{3} +279.508 q^{5} -3940.57i q^{7} -12289.4 q^{9} +17097.0i q^{11} -10938.7 q^{13} +38375.6i q^{15} +101666. q^{17} -93432.1i q^{19} +541029. q^{21} +147346. i q^{23} +78125.0 q^{25} -786497. i q^{27} -41637.4 q^{29} -138577. i q^{31} -2.34736e6 q^{33} -1.10142e6i q^{35} -1.14978e6 q^{37} -1.50185e6i q^{39} +3.83906e6 q^{41} +3.18959e6i q^{43} -3.43500e6 q^{45} +3.51218e6i q^{47} -9.76332e6 q^{49} +1.39584e7i q^{51} -5.66612e6 q^{53} +4.77874e6i q^{55} +1.28279e7 q^{57} +1.69068e7i q^{59} +5.16010e6 q^{61} +4.84274e7i q^{63} -3.05745e6 q^{65} +1.05358e7i q^{67} -2.02302e7 q^{69} -1.85971e7i q^{71} +2.38535e6 q^{73} +1.07263e7i q^{75} +6.73718e7 q^{77} +4.42560e7i q^{79} +2.73525e7 q^{81} +1.51824e7i q^{83} +2.84164e7 q^{85} -5.71668e6i q^{87} -5.42739e7 q^{89} +4.31047e7i q^{91} +1.90261e7 q^{93} -2.61151e7i q^{95} -1.24798e8 q^{97} -2.10112e8i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 38800 q^{9} - 51392 q^{13} + 27552 q^{17} - 414496 q^{21} + 1250000 q^{25} - 2764896 q^{29} - 5521600 q^{33} - 9009472 q^{37} - 8576448 q^{41} - 1580000 q^{45} - 32803600 q^{49} - 2452032 q^{53}+ \cdots + 171851232 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/320\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(257\) \(261\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 137.297i 1.69502i 0.530777 + 0.847512i \(0.321900\pi\)
−0.530777 + 0.847512i \(0.678100\pi\)
\(4\) 0 0
\(5\) 279.508 0.447214
\(6\) 0 0
\(7\) − 3940.57i − 1.64122i −0.571487 0.820611i \(-0.693633\pi\)
0.571487 0.820611i \(-0.306367\pi\)
\(8\) 0 0
\(9\) −12289.4 −1.87310
\(10\) 0 0
\(11\) 17097.0i 1.16775i 0.811845 + 0.583873i \(0.198463\pi\)
−0.811845 + 0.583873i \(0.801537\pi\)
\(12\) 0 0
\(13\) −10938.7 −0.382994 −0.191497 0.981493i \(-0.561334\pi\)
−0.191497 + 0.981493i \(0.561334\pi\)
\(14\) 0 0
\(15\) 38375.6i 0.758037i
\(16\) 0 0
\(17\) 101666. 1.21725 0.608624 0.793459i \(-0.291722\pi\)
0.608624 + 0.793459i \(0.291722\pi\)
\(18\) 0 0
\(19\) − 93432.1i − 0.716938i −0.933542 0.358469i \(-0.883299\pi\)
0.933542 0.358469i \(-0.116701\pi\)
\(20\) 0 0
\(21\) 541029. 2.78191
\(22\) 0 0
\(23\) 147346.i 0.526536i 0.964723 + 0.263268i \(0.0848003\pi\)
−0.964723 + 0.263268i \(0.915200\pi\)
\(24\) 0 0
\(25\) 78125.0 0.200000
\(26\) 0 0
\(27\) − 786497.i − 1.47993i
\(28\) 0 0
\(29\) −41637.4 −0.0588696 −0.0294348 0.999567i \(-0.509371\pi\)
−0.0294348 + 0.999567i \(0.509371\pi\)
\(30\) 0 0
\(31\) − 138577.i − 0.150052i −0.997182 0.0750262i \(-0.976096\pi\)
0.997182 0.0750262i \(-0.0239040\pi\)
\(32\) 0 0
\(33\) −2.34736e6 −1.97936
\(34\) 0 0
\(35\) − 1.10142e6i − 0.733977i
\(36\) 0 0
\(37\) −1.14978e6 −0.613489 −0.306745 0.951792i \(-0.599240\pi\)
−0.306745 + 0.951792i \(0.599240\pi\)
\(38\) 0 0
\(39\) − 1.50185e6i − 0.649183i
\(40\) 0 0
\(41\) 3.83906e6 1.35859 0.679297 0.733864i \(-0.262285\pi\)
0.679297 + 0.733864i \(0.262285\pi\)
\(42\) 0 0
\(43\) 3.18959e6i 0.932956i 0.884533 + 0.466478i \(0.154477\pi\)
−0.884533 + 0.466478i \(0.845523\pi\)
\(44\) 0 0
\(45\) −3.43500e6 −0.837678
\(46\) 0 0
\(47\) 3.51218e6i 0.719756i 0.932999 + 0.359878i \(0.117182\pi\)
−0.932999 + 0.359878i \(0.882818\pi\)
\(48\) 0 0
\(49\) −9.76332e6 −1.69361
\(50\) 0 0
\(51\) 1.39584e7i 2.06326i
\(52\) 0 0
\(53\) −5.66612e6 −0.718096 −0.359048 0.933319i \(-0.616899\pi\)
−0.359048 + 0.933319i \(0.616899\pi\)
\(54\) 0 0
\(55\) 4.77874e6i 0.522231i
\(56\) 0 0
\(57\) 1.28279e7 1.21523
\(58\) 0 0
\(59\) 1.69068e7i 1.39525i 0.716461 + 0.697627i \(0.245761\pi\)
−0.716461 + 0.697627i \(0.754239\pi\)
\(60\) 0 0
\(61\) 5.16010e6 0.372682 0.186341 0.982485i \(-0.440337\pi\)
0.186341 + 0.982485i \(0.440337\pi\)
\(62\) 0 0
\(63\) 4.84274e7i 3.07418i
\(64\) 0 0
\(65\) −3.05745e6 −0.171280
\(66\) 0 0
\(67\) 1.05358e7i 0.522838i 0.965225 + 0.261419i \(0.0841904\pi\)
−0.965225 + 0.261419i \(0.915810\pi\)
\(68\) 0 0
\(69\) −2.02302e7 −0.892490
\(70\) 0 0
\(71\) − 1.85971e7i − 0.731833i −0.930648 0.365916i \(-0.880756\pi\)
0.930648 0.365916i \(-0.119244\pi\)
\(72\) 0 0
\(73\) 2.38535e6 0.0839964 0.0419982 0.999118i \(-0.486628\pi\)
0.0419982 + 0.999118i \(0.486628\pi\)
\(74\) 0 0
\(75\) 1.07263e7i 0.339005i
\(76\) 0 0
\(77\) 6.73718e7 1.91653
\(78\) 0 0
\(79\) 4.42560e7i 1.13622i 0.822951 + 0.568112i \(0.192326\pi\)
−0.822951 + 0.568112i \(0.807674\pi\)
\(80\) 0 0
\(81\) 2.73525e7 0.635415
\(82\) 0 0
\(83\) 1.51824e7i 0.319910i 0.987124 + 0.159955i \(0.0511349\pi\)
−0.987124 + 0.159955i \(0.948865\pi\)
\(84\) 0 0
\(85\) 2.84164e7 0.544369
\(86\) 0 0
\(87\) − 5.71668e6i − 0.0997854i
\(88\) 0 0
\(89\) −5.42739e7 −0.865030 −0.432515 0.901627i \(-0.642374\pi\)
−0.432515 + 0.901627i \(0.642374\pi\)
\(90\) 0 0
\(91\) 4.31047e7i 0.628577i
\(92\) 0 0
\(93\) 1.90261e7 0.254342
\(94\) 0 0
\(95\) − 2.61151e7i − 0.320624i
\(96\) 0 0
\(97\) −1.24798e8 −1.40968 −0.704841 0.709365i \(-0.748982\pi\)
−0.704841 + 0.709365i \(0.748982\pi\)
\(98\) 0 0
\(99\) − 2.10112e8i − 2.18731i
\(100\) 0 0
\(101\) −1.96354e8 −1.88693 −0.943463 0.331478i \(-0.892453\pi\)
−0.943463 + 0.331478i \(0.892453\pi\)
\(102\) 0 0
\(103\) 1.08404e8i 0.963152i 0.876404 + 0.481576i \(0.159935\pi\)
−0.876404 + 0.481576i \(0.840065\pi\)
\(104\) 0 0
\(105\) 1.51222e8 1.24411
\(106\) 0 0
\(107\) − 5.19293e7i − 0.396166i −0.980185 0.198083i \(-0.936528\pi\)
0.980185 0.198083i \(-0.0634715\pi\)
\(108\) 0 0
\(109\) −2.01131e8 −1.42486 −0.712432 0.701741i \(-0.752406\pi\)
−0.712432 + 0.701741i \(0.752406\pi\)
\(110\) 0 0
\(111\) − 1.57861e8i − 1.03988i
\(112\) 0 0
\(113\) −6.82663e7 −0.418690 −0.209345 0.977842i \(-0.567133\pi\)
−0.209345 + 0.977842i \(0.567133\pi\)
\(114\) 0 0
\(115\) 4.11845e7i 0.235474i
\(116\) 0 0
\(117\) 1.34430e8 0.717387
\(118\) 0 0
\(119\) − 4.00621e8i − 1.99777i
\(120\) 0 0
\(121\) −7.79470e7 −0.363629
\(122\) 0 0
\(123\) 5.27091e8i 2.30285i
\(124\) 0 0
\(125\) 2.18366e7 0.0894427
\(126\) 0 0
\(127\) 3.48984e8i 1.34150i 0.741683 + 0.670751i \(0.234028\pi\)
−0.741683 + 0.670751i \(0.765972\pi\)
\(128\) 0 0
\(129\) −4.37921e8 −1.58138
\(130\) 0 0
\(131\) 1.49192e8i 0.506596i 0.967388 + 0.253298i \(0.0815153\pi\)
−0.967388 + 0.253298i \(0.918485\pi\)
\(132\) 0 0
\(133\) −3.68176e8 −1.17665
\(134\) 0 0
\(135\) − 2.19832e8i − 0.661846i
\(136\) 0 0
\(137\) 6.05661e8 1.71928 0.859642 0.510897i \(-0.170687\pi\)
0.859642 + 0.510897i \(0.170687\pi\)
\(138\) 0 0
\(139\) − 5.19290e8i − 1.39107i −0.718490 0.695537i \(-0.755166\pi\)
0.718490 0.695537i \(-0.244834\pi\)
\(140\) 0 0
\(141\) −4.82211e8 −1.22000
\(142\) 0 0
\(143\) − 1.87018e8i − 0.447239i
\(144\) 0 0
\(145\) −1.16380e7 −0.0263273
\(146\) 0 0
\(147\) − 1.34047e9i − 2.87071i
\(148\) 0 0
\(149\) 6.13964e8 1.24565 0.622827 0.782359i \(-0.285984\pi\)
0.622827 + 0.782359i \(0.285984\pi\)
\(150\) 0 0
\(151\) 5.41162e8i 1.04093i 0.853884 + 0.520463i \(0.174241\pi\)
−0.853884 + 0.520463i \(0.825759\pi\)
\(152\) 0 0
\(153\) −1.24941e9 −2.28003
\(154\) 0 0
\(155\) − 3.87333e7i − 0.0671055i
\(156\) 0 0
\(157\) 6.43982e8 1.05993 0.529963 0.848021i \(-0.322206\pi\)
0.529963 + 0.848021i \(0.322206\pi\)
\(158\) 0 0
\(159\) − 7.77941e8i − 1.21719i
\(160\) 0 0
\(161\) 5.80629e8 0.864162
\(162\) 0 0
\(163\) − 6.74607e8i − 0.955653i −0.878454 0.477826i \(-0.841425\pi\)
0.878454 0.477826i \(-0.158575\pi\)
\(164\) 0 0
\(165\) −6.56107e8 −0.885195
\(166\) 0 0
\(167\) − 4.55554e8i − 0.585699i −0.956159 0.292849i \(-0.905397\pi\)
0.956159 0.292849i \(-0.0946035\pi\)
\(168\) 0 0
\(169\) −6.96076e8 −0.853316
\(170\) 0 0
\(171\) 1.14823e9i 1.34290i
\(172\) 0 0
\(173\) −9.64344e8 −1.07658 −0.538292 0.842759i \(-0.680930\pi\)
−0.538292 + 0.842759i \(0.680930\pi\)
\(174\) 0 0
\(175\) − 3.07857e8i − 0.328244i
\(176\) 0 0
\(177\) −2.32125e9 −2.36499
\(178\) 0 0
\(179\) − 1.01365e9i − 0.987363i −0.869643 0.493682i \(-0.835651\pi\)
0.869643 0.493682i \(-0.164349\pi\)
\(180\) 0 0
\(181\) −1.51507e8 −0.141162 −0.0705812 0.997506i \(-0.522485\pi\)
−0.0705812 + 0.997506i \(0.522485\pi\)
\(182\) 0 0
\(183\) 7.08465e8i 0.631705i
\(184\) 0 0
\(185\) −3.21373e8 −0.274361
\(186\) 0 0
\(187\) 1.73817e9i 1.42143i
\(188\) 0 0
\(189\) −3.09925e9 −2.42890
\(190\) 0 0
\(191\) − 5.46186e8i − 0.410399i −0.978720 0.205200i \(-0.934216\pi\)
0.978720 0.205200i \(-0.0657844\pi\)
\(192\) 0 0
\(193\) 1.52005e9 1.09554 0.547771 0.836628i \(-0.315477\pi\)
0.547771 + 0.836628i \(0.315477\pi\)
\(194\) 0 0
\(195\) − 4.19779e8i − 0.290323i
\(196\) 0 0
\(197\) −1.98770e9 −1.31974 −0.659868 0.751382i \(-0.729388\pi\)
−0.659868 + 0.751382i \(0.729388\pi\)
\(198\) 0 0
\(199\) 1.68735e9i 1.07595i 0.842960 + 0.537976i \(0.180811\pi\)
−0.842960 + 0.537976i \(0.819189\pi\)
\(200\) 0 0
\(201\) −1.44653e9 −0.886222
\(202\) 0 0
\(203\) 1.64075e8i 0.0966182i
\(204\) 0 0
\(205\) 1.07305e9 0.607582
\(206\) 0 0
\(207\) − 1.81080e9i − 0.986256i
\(208\) 0 0
\(209\) 1.59740e9 0.837201
\(210\) 0 0
\(211\) 3.55239e9i 1.79222i 0.443834 + 0.896109i \(0.353618\pi\)
−0.443834 + 0.896109i \(0.646382\pi\)
\(212\) 0 0
\(213\) 2.55332e9 1.24047
\(214\) 0 0
\(215\) 8.91518e8i 0.417231i
\(216\) 0 0
\(217\) −5.46071e8 −0.246269
\(218\) 0 0
\(219\) 3.27501e8i 0.142376i
\(220\) 0 0
\(221\) −1.11209e9 −0.466198
\(222\) 0 0
\(223\) 1.41187e9i 0.570920i 0.958391 + 0.285460i \(0.0921465\pi\)
−0.958391 + 0.285460i \(0.907854\pi\)
\(224\) 0 0
\(225\) −9.60112e8 −0.374621
\(226\) 0 0
\(227\) 1.08981e9i 0.410438i 0.978716 + 0.205219i \(0.0657906\pi\)
−0.978716 + 0.205219i \(0.934209\pi\)
\(228\) 0 0
\(229\) 2.25807e9 0.821097 0.410549 0.911839i \(-0.365337\pi\)
0.410549 + 0.911839i \(0.365337\pi\)
\(230\) 0 0
\(231\) 9.24994e9i 3.24856i
\(232\) 0 0
\(233\) 6.52483e8 0.221384 0.110692 0.993855i \(-0.464693\pi\)
0.110692 + 0.993855i \(0.464693\pi\)
\(234\) 0 0
\(235\) 9.81684e8i 0.321885i
\(236\) 0 0
\(237\) −6.07622e9 −1.92593
\(238\) 0 0
\(239\) − 4.79300e9i − 1.46898i −0.678619 0.734490i \(-0.737421\pi\)
0.678619 0.734490i \(-0.262579\pi\)
\(240\) 0 0
\(241\) −5.18381e9 −1.53667 −0.768335 0.640048i \(-0.778915\pi\)
−0.768335 + 0.640048i \(0.778915\pi\)
\(242\) 0 0
\(243\) − 1.40479e9i − 0.402889i
\(244\) 0 0
\(245\) −2.72893e9 −0.757405
\(246\) 0 0
\(247\) 1.02202e9i 0.274583i
\(248\) 0 0
\(249\) −2.08449e9 −0.542255
\(250\) 0 0
\(251\) 2.41878e9i 0.609398i 0.952449 + 0.304699i \(0.0985558\pi\)
−0.952449 + 0.304699i \(0.901444\pi\)
\(252\) 0 0
\(253\) −2.51917e9 −0.614859
\(254\) 0 0
\(255\) 3.90149e9i 0.922719i
\(256\) 0 0
\(257\) −5.25554e9 −1.20472 −0.602358 0.798226i \(-0.705772\pi\)
−0.602358 + 0.798226i \(0.705772\pi\)
\(258\) 0 0
\(259\) 4.53078e9i 1.00687i
\(260\) 0 0
\(261\) 5.11700e8 0.110269
\(262\) 0 0
\(263\) − 1.24951e9i − 0.261165i −0.991437 0.130583i \(-0.958315\pi\)
0.991437 0.130583i \(-0.0416848\pi\)
\(264\) 0 0
\(265\) −1.58373e9 −0.321142
\(266\) 0 0
\(267\) − 7.45164e9i − 1.46625i
\(268\) 0 0
\(269\) 5.36357e9 1.02434 0.512171 0.858884i \(-0.328841\pi\)
0.512171 + 0.858884i \(0.328841\pi\)
\(270\) 0 0
\(271\) 6.72329e8i 0.124654i 0.998056 + 0.0623268i \(0.0198521\pi\)
−0.998056 + 0.0623268i \(0.980148\pi\)
\(272\) 0 0
\(273\) −5.91814e9 −1.06545
\(274\) 0 0
\(275\) 1.33570e9i 0.233549i
\(276\) 0 0
\(277\) −8.55117e9 −1.45247 −0.726234 0.687448i \(-0.758731\pi\)
−0.726234 + 0.687448i \(0.758731\pi\)
\(278\) 0 0
\(279\) 1.70303e9i 0.281064i
\(280\) 0 0
\(281\) −8.47677e8 −0.135958 −0.0679791 0.997687i \(-0.521655\pi\)
−0.0679791 + 0.997687i \(0.521655\pi\)
\(282\) 0 0
\(283\) 2.59848e9i 0.405111i 0.979271 + 0.202555i \(0.0649246\pi\)
−0.979271 + 0.202555i \(0.935075\pi\)
\(284\) 0 0
\(285\) 3.58552e9 0.543466
\(286\) 0 0
\(287\) − 1.51281e10i − 2.22975i
\(288\) 0 0
\(289\) 3.36016e9 0.481691
\(290\) 0 0
\(291\) − 1.71344e10i − 2.38944i
\(292\) 0 0
\(293\) −1.18893e10 −1.61319 −0.806594 0.591107i \(-0.798691\pi\)
−0.806594 + 0.591107i \(0.798691\pi\)
\(294\) 0 0
\(295\) 4.72559e9i 0.623976i
\(296\) 0 0
\(297\) 1.34467e10 1.72818
\(298\) 0 0
\(299\) − 1.61177e9i − 0.201660i
\(300\) 0 0
\(301\) 1.25688e10 1.53119
\(302\) 0 0
\(303\) − 2.69588e10i − 3.19838i
\(304\) 0 0
\(305\) 1.44229e9 0.166669
\(306\) 0 0
\(307\) − 1.74109e10i − 1.96005i −0.198868 0.980026i \(-0.563727\pi\)
0.198868 0.980026i \(-0.436273\pi\)
\(308\) 0 0
\(309\) −1.48835e10 −1.63257
\(310\) 0 0
\(311\) 8.61717e9i 0.921135i 0.887625 + 0.460567i \(0.152354\pi\)
−0.887625 + 0.460567i \(0.847646\pi\)
\(312\) 0 0
\(313\) −9.76978e9 −1.01791 −0.508953 0.860794i \(-0.669967\pi\)
−0.508953 + 0.860794i \(0.669967\pi\)
\(314\) 0 0
\(315\) 1.35359e10i 1.37482i
\(316\) 0 0
\(317\) 6.57561e9 0.651177 0.325589 0.945512i \(-0.394438\pi\)
0.325589 + 0.945512i \(0.394438\pi\)
\(318\) 0 0
\(319\) − 7.11872e8i − 0.0687447i
\(320\) 0 0
\(321\) 7.12973e9 0.671510
\(322\) 0 0
\(323\) − 9.49884e9i − 0.872691i
\(324\) 0 0
\(325\) −8.54584e8 −0.0765987
\(326\) 0 0
\(327\) − 2.76147e10i − 2.41518i
\(328\) 0 0
\(329\) 1.38400e10 1.18128
\(330\) 0 0
\(331\) 2.32794e10i 1.93936i 0.244370 + 0.969682i \(0.421419\pi\)
−0.244370 + 0.969682i \(0.578581\pi\)
\(332\) 0 0
\(333\) 1.41301e10 1.14913
\(334\) 0 0
\(335\) 2.94484e9i 0.233820i
\(336\) 0 0
\(337\) −1.99301e9 −0.154522 −0.0772610 0.997011i \(-0.524617\pi\)
−0.0772610 + 0.997011i \(0.524617\pi\)
\(338\) 0 0
\(339\) − 9.37275e9i − 0.709690i
\(340\) 0 0
\(341\) 2.36924e9 0.175223
\(342\) 0 0
\(343\) 1.57565e10i 1.13837i
\(344\) 0 0
\(345\) −5.65451e9 −0.399134
\(346\) 0 0
\(347\) 6.31855e9i 0.435813i 0.975970 + 0.217906i \(0.0699227\pi\)
−0.975970 + 0.217906i \(0.930077\pi\)
\(348\) 0 0
\(349\) 1.87010e9 0.126056 0.0630279 0.998012i \(-0.479924\pi\)
0.0630279 + 0.998012i \(0.479924\pi\)
\(350\) 0 0
\(351\) 8.60323e9i 0.566804i
\(352\) 0 0
\(353\) 3.02132e10 1.94580 0.972900 0.231225i \(-0.0742734\pi\)
0.972900 + 0.231225i \(0.0742734\pi\)
\(354\) 0 0
\(355\) − 5.19805e9i − 0.327286i
\(356\) 0 0
\(357\) 5.50041e10 3.38627
\(358\) 0 0
\(359\) 1.82078e10i 1.09618i 0.836421 + 0.548088i \(0.184644\pi\)
−0.836421 + 0.548088i \(0.815356\pi\)
\(360\) 0 0
\(361\) 8.25401e9 0.486000
\(362\) 0 0
\(363\) − 1.07019e10i − 0.616359i
\(364\) 0 0
\(365\) 6.66725e8 0.0375643
\(366\) 0 0
\(367\) 1.46648e10i 0.808372i 0.914677 + 0.404186i \(0.132445\pi\)
−0.914677 + 0.404186i \(0.867555\pi\)
\(368\) 0 0
\(369\) −4.71799e10 −2.54479
\(370\) 0 0
\(371\) 2.23278e10i 1.17855i
\(372\) 0 0
\(373\) −1.41277e10 −0.729857 −0.364928 0.931036i \(-0.618906\pi\)
−0.364928 + 0.931036i \(0.618906\pi\)
\(374\) 0 0
\(375\) 2.99810e9i 0.151607i
\(376\) 0 0
\(377\) 4.55458e8 0.0225467
\(378\) 0 0
\(379\) − 3.94069e9i − 0.190992i −0.995430 0.0954960i \(-0.969556\pi\)
0.995430 0.0954960i \(-0.0304437\pi\)
\(380\) 0 0
\(381\) −4.79145e10 −2.27388
\(382\) 0 0
\(383\) 3.43063e10i 1.59433i 0.603760 + 0.797166i \(0.293668\pi\)
−0.603760 + 0.797166i \(0.706332\pi\)
\(384\) 0 0
\(385\) 1.88310e10 0.857098
\(386\) 0 0
\(387\) − 3.91983e10i − 1.74752i
\(388\) 0 0
\(389\) −4.14309e8 −0.0180936 −0.00904681 0.999959i \(-0.502880\pi\)
−0.00904681 + 0.999959i \(0.502880\pi\)
\(390\) 0 0
\(391\) 1.49801e10i 0.640924i
\(392\) 0 0
\(393\) −2.04837e10 −0.858692
\(394\) 0 0
\(395\) 1.23699e10i 0.508135i
\(396\) 0 0
\(397\) −2.25453e10 −0.907598 −0.453799 0.891104i \(-0.649932\pi\)
−0.453799 + 0.891104i \(0.649932\pi\)
\(398\) 0 0
\(399\) − 5.05494e10i − 1.99446i
\(400\) 0 0
\(401\) −2.53666e10 −0.981037 −0.490519 0.871431i \(-0.663193\pi\)
−0.490519 + 0.871431i \(0.663193\pi\)
\(402\) 0 0
\(403\) 1.51584e9i 0.0574691i
\(404\) 0 0
\(405\) 7.64527e9 0.284166
\(406\) 0 0
\(407\) − 1.96577e10i − 0.716399i
\(408\) 0 0
\(409\) 1.47057e10 0.525523 0.262761 0.964861i \(-0.415367\pi\)
0.262761 + 0.964861i \(0.415367\pi\)
\(410\) 0 0
\(411\) 8.31554e10i 2.91423i
\(412\) 0 0
\(413\) 6.66225e10 2.28992
\(414\) 0 0
\(415\) 4.24361e9i 0.143068i
\(416\) 0 0
\(417\) 7.12968e10 2.35790
\(418\) 0 0
\(419\) 7.30915e9i 0.237143i 0.992946 + 0.118572i \(0.0378315\pi\)
−0.992946 + 0.118572i \(0.962168\pi\)
\(420\) 0 0
\(421\) 4.09140e10 1.30240 0.651199 0.758907i \(-0.274266\pi\)
0.651199 + 0.758907i \(0.274266\pi\)
\(422\) 0 0
\(423\) − 4.31627e10i − 1.34818i
\(424\) 0 0
\(425\) 7.94263e9 0.243449
\(426\) 0 0
\(427\) − 2.03337e10i − 0.611654i
\(428\) 0 0
\(429\) 2.56770e10 0.758080
\(430\) 0 0
\(431\) 3.95128e9i 0.114506i 0.998360 + 0.0572531i \(0.0182342\pi\)
−0.998360 + 0.0572531i \(0.981766\pi\)
\(432\) 0 0
\(433\) 2.88725e10 0.821358 0.410679 0.911780i \(-0.365292\pi\)
0.410679 + 0.911780i \(0.365292\pi\)
\(434\) 0 0
\(435\) − 1.59786e9i − 0.0446254i
\(436\) 0 0
\(437\) 1.37669e10 0.377493
\(438\) 0 0
\(439\) − 1.66340e10i − 0.447857i −0.974606 0.223929i \(-0.928112\pi\)
0.974606 0.223929i \(-0.0718883\pi\)
\(440\) 0 0
\(441\) 1.19986e11 3.17231
\(442\) 0 0
\(443\) − 1.61256e10i − 0.418699i −0.977841 0.209350i \(-0.932865\pi\)
0.977841 0.209350i \(-0.0671346\pi\)
\(444\) 0 0
\(445\) −1.51700e10 −0.386853
\(446\) 0 0
\(447\) 8.42953e10i 2.11141i
\(448\) 0 0
\(449\) 1.31471e10 0.323478 0.161739 0.986834i \(-0.448290\pi\)
0.161739 + 0.986834i \(0.448290\pi\)
\(450\) 0 0
\(451\) 6.56363e10i 1.58649i
\(452\) 0 0
\(453\) −7.42999e10 −1.76439
\(454\) 0 0
\(455\) 1.20481e10i 0.281108i
\(456\) 0 0
\(457\) −6.79985e10 −1.55896 −0.779480 0.626427i \(-0.784516\pi\)
−0.779480 + 0.626427i \(0.784516\pi\)
\(458\) 0 0
\(459\) − 7.99597e10i − 1.80144i
\(460\) 0 0
\(461\) 2.86783e10 0.634966 0.317483 0.948264i \(-0.397162\pi\)
0.317483 + 0.948264i \(0.397162\pi\)
\(462\) 0 0
\(463\) 4.22729e9i 0.0919894i 0.998942 + 0.0459947i \(0.0146457\pi\)
−0.998942 + 0.0459947i \(0.985354\pi\)
\(464\) 0 0
\(465\) 5.31796e9 0.113745
\(466\) 0 0
\(467\) 4.27269e10i 0.898325i 0.893450 + 0.449163i \(0.148278\pi\)
−0.893450 + 0.449163i \(0.851722\pi\)
\(468\) 0 0
\(469\) 4.15170e10 0.858093
\(470\) 0 0
\(471\) 8.84167e10i 1.79660i
\(472\) 0 0
\(473\) −5.45323e10 −1.08946
\(474\) 0 0
\(475\) − 7.29938e9i − 0.143388i
\(476\) 0 0
\(477\) 6.96334e10 1.34507
\(478\) 0 0
\(479\) 6.73017e10i 1.27845i 0.769020 + 0.639225i \(0.220745\pi\)
−0.769020 + 0.639225i \(0.779255\pi\)
\(480\) 0 0
\(481\) 1.25770e10 0.234962
\(482\) 0 0
\(483\) 7.97185e10i 1.46477i
\(484\) 0 0
\(485\) −3.48821e10 −0.630429
\(486\) 0 0
\(487\) − 9.69928e10i − 1.72434i −0.506616 0.862172i \(-0.669104\pi\)
0.506616 0.862172i \(-0.330896\pi\)
\(488\) 0 0
\(489\) 9.26214e10 1.61985
\(490\) 0 0
\(491\) − 1.73575e10i − 0.298648i −0.988788 0.149324i \(-0.952290\pi\)
0.988788 0.149324i \(-0.0477098\pi\)
\(492\) 0 0
\(493\) −4.23309e9 −0.0716589
\(494\) 0 0
\(495\) − 5.87281e10i − 0.978194i
\(496\) 0 0
\(497\) −7.32833e10 −1.20110
\(498\) 0 0
\(499\) 1.42959e10i 0.230573i 0.993332 + 0.115287i \(0.0367787\pi\)
−0.993332 + 0.115287i \(0.963221\pi\)
\(500\) 0 0
\(501\) 6.25462e10 0.992773
\(502\) 0 0
\(503\) 6.90584e10i 1.07881i 0.842047 + 0.539404i \(0.181351\pi\)
−0.842047 + 0.539404i \(0.818649\pi\)
\(504\) 0 0
\(505\) −5.48827e10 −0.843859
\(506\) 0 0
\(507\) − 9.55691e10i − 1.44639i
\(508\) 0 0
\(509\) 5.98939e10 0.892302 0.446151 0.894958i \(-0.352794\pi\)
0.446151 + 0.894958i \(0.352794\pi\)
\(510\) 0 0
\(511\) − 9.39964e9i − 0.137857i
\(512\) 0 0
\(513\) −7.34840e10 −1.06102
\(514\) 0 0
\(515\) 3.02997e10i 0.430735i
\(516\) 0 0
\(517\) −6.00476e10 −0.840491
\(518\) 0 0
\(519\) − 1.32401e11i − 1.82483i
\(520\) 0 0
\(521\) 2.97388e10 0.403620 0.201810 0.979425i \(-0.435318\pi\)
0.201810 + 0.979425i \(0.435318\pi\)
\(522\) 0 0
\(523\) 3.20935e10i 0.428954i 0.976729 + 0.214477i \(0.0688047\pi\)
−0.976729 + 0.214477i \(0.931195\pi\)
\(524\) 0 0
\(525\) 4.22679e10 0.556382
\(526\) 0 0
\(527\) − 1.40885e10i − 0.182651i
\(528\) 0 0
\(529\) 5.66001e10 0.722760
\(530\) 0 0
\(531\) − 2.07775e11i − 2.61345i
\(532\) 0 0
\(533\) −4.19943e10 −0.520333
\(534\) 0 0
\(535\) − 1.45147e10i − 0.177171i
\(536\) 0 0
\(537\) 1.39171e11 1.67360
\(538\) 0 0
\(539\) − 1.66923e11i − 1.97770i
\(540\) 0 0
\(541\) −3.92268e10 −0.457924 −0.228962 0.973435i \(-0.573533\pi\)
−0.228962 + 0.973435i \(0.573533\pi\)
\(542\) 0 0
\(543\) − 2.08015e10i − 0.239274i
\(544\) 0 0
\(545\) −5.62179e10 −0.637219
\(546\) 0 0
\(547\) 9.39638e10i 1.04957i 0.851235 + 0.524785i \(0.175854\pi\)
−0.851235 + 0.524785i \(0.824146\pi\)
\(548\) 0 0
\(549\) −6.34147e10 −0.698073
\(550\) 0 0
\(551\) 3.89027e9i 0.0422059i
\(552\) 0 0
\(553\) 1.74394e11 1.86480
\(554\) 0 0
\(555\) − 4.41235e10i − 0.465048i
\(556\) 0 0
\(557\) −8.98122e10 −0.933071 −0.466535 0.884503i \(-0.654498\pi\)
−0.466535 + 0.884503i \(0.654498\pi\)
\(558\) 0 0
\(559\) − 3.48899e10i − 0.357316i
\(560\) 0 0
\(561\) −2.38646e11 −2.40936
\(562\) 0 0
\(563\) 1.80533e10i 0.179689i 0.995956 + 0.0898446i \(0.0286371\pi\)
−0.995956 + 0.0898446i \(0.971363\pi\)
\(564\) 0 0
\(565\) −1.90810e10 −0.187244
\(566\) 0 0
\(567\) − 1.07785e11i − 1.04286i
\(568\) 0 0
\(569\) −6.90947e10 −0.659167 −0.329584 0.944126i \(-0.606908\pi\)
−0.329584 + 0.944126i \(0.606908\pi\)
\(570\) 0 0
\(571\) − 7.86073e10i − 0.739467i −0.929138 0.369733i \(-0.879449\pi\)
0.929138 0.369733i \(-0.120551\pi\)
\(572\) 0 0
\(573\) 7.49896e10 0.695637
\(574\) 0 0
\(575\) 1.15114e10i 0.105307i
\(576\) 0 0
\(577\) −1.80277e11 −1.62643 −0.813216 0.581962i \(-0.802285\pi\)
−0.813216 + 0.581962i \(0.802285\pi\)
\(578\) 0 0
\(579\) 2.08698e11i 1.85697i
\(580\) 0 0
\(581\) 5.98273e10 0.525043
\(582\) 0 0
\(583\) − 9.68734e10i − 0.838553i
\(584\) 0 0
\(585\) 3.75744e10 0.320825
\(586\) 0 0
\(587\) 3.62809e9i 0.0305581i 0.999883 + 0.0152790i \(0.00486366\pi\)
−0.999883 + 0.0152790i \(0.995136\pi\)
\(588\) 0 0
\(589\) −1.29475e10 −0.107578
\(590\) 0 0
\(591\) − 2.72906e11i − 2.23698i
\(592\) 0 0
\(593\) 8.72511e10 0.705589 0.352795 0.935701i \(-0.385231\pi\)
0.352795 + 0.935701i \(0.385231\pi\)
\(594\) 0 0
\(595\) − 1.11977e11i − 0.893431i
\(596\) 0 0
\(597\) −2.31668e11 −1.82376
\(598\) 0 0
\(599\) − 1.90496e10i − 0.147972i −0.997259 0.0739858i \(-0.976428\pi\)
0.997259 0.0739858i \(-0.0235720\pi\)
\(600\) 0 0
\(601\) 1.75085e11 1.34200 0.670998 0.741459i \(-0.265866\pi\)
0.670998 + 0.741459i \(0.265866\pi\)
\(602\) 0 0
\(603\) − 1.29479e11i − 0.979329i
\(604\) 0 0
\(605\) −2.17869e10 −0.162620
\(606\) 0 0
\(607\) 1.75308e11i 1.29136i 0.763608 + 0.645680i \(0.223426\pi\)
−0.763608 + 0.645680i \(0.776574\pi\)
\(608\) 0 0
\(609\) −2.25270e10 −0.163770
\(610\) 0 0
\(611\) − 3.84186e10i − 0.275662i
\(612\) 0 0
\(613\) −1.26999e10 −0.0899412 −0.0449706 0.998988i \(-0.514319\pi\)
−0.0449706 + 0.998988i \(0.514319\pi\)
\(614\) 0 0
\(615\) 1.47326e11i 1.02987i
\(616\) 0 0
\(617\) 2.29769e11 1.58544 0.792720 0.609586i \(-0.208664\pi\)
0.792720 + 0.609586i \(0.208664\pi\)
\(618\) 0 0
\(619\) 1.67400e11i 1.14023i 0.821564 + 0.570116i \(0.193102\pi\)
−0.821564 + 0.570116i \(0.806898\pi\)
\(620\) 0 0
\(621\) 1.15887e11 0.779237
\(622\) 0 0
\(623\) 2.13870e11i 1.41971i
\(624\) 0 0
\(625\) 6.10352e9 0.0400000
\(626\) 0 0
\(627\) 2.19319e11i 1.41907i
\(628\) 0 0
\(629\) −1.16893e11 −0.746768
\(630\) 0 0
\(631\) 2.92637e9i 0.0184591i 0.999957 + 0.00922957i \(0.00293791\pi\)
−0.999957 + 0.00922957i \(0.997062\pi\)
\(632\) 0 0
\(633\) −4.87732e11 −3.03785
\(634\) 0 0
\(635\) 9.75441e10i 0.599938i
\(636\) 0 0
\(637\) 1.06798e11 0.648642
\(638\) 0 0
\(639\) 2.28548e11i 1.37080i
\(640\) 0 0
\(641\) −1.15318e11 −0.683071 −0.341535 0.939869i \(-0.610947\pi\)
−0.341535 + 0.939869i \(0.610947\pi\)
\(642\) 0 0
\(643\) 4.99010e10i 0.291921i 0.989290 + 0.145961i \(0.0466273\pi\)
−0.989290 + 0.145961i \(0.953373\pi\)
\(644\) 0 0
\(645\) −1.22403e11 −0.707216
\(646\) 0 0
\(647\) 5.43112e10i 0.309936i 0.987919 + 0.154968i \(0.0495275\pi\)
−0.987919 + 0.154968i \(0.950473\pi\)
\(648\) 0 0
\(649\) −2.89055e11 −1.62930
\(650\) 0 0
\(651\) − 7.49739e10i − 0.417432i
\(652\) 0 0
\(653\) −1.40265e11 −0.771433 −0.385716 0.922617i \(-0.626046\pi\)
−0.385716 + 0.922617i \(0.626046\pi\)
\(654\) 0 0
\(655\) 4.17006e10i 0.226557i
\(656\) 0 0
\(657\) −2.93146e10 −0.157334
\(658\) 0 0
\(659\) 2.51334e11i 1.33263i 0.745670 + 0.666315i \(0.232129\pi\)
−0.745670 + 0.666315i \(0.767871\pi\)
\(660\) 0 0
\(661\) −1.18006e10 −0.0618155 −0.0309077 0.999522i \(-0.509840\pi\)
−0.0309077 + 0.999522i \(0.509840\pi\)
\(662\) 0 0
\(663\) − 1.52686e11i − 0.790216i
\(664\) 0 0
\(665\) −1.02908e11 −0.526216
\(666\) 0 0
\(667\) − 6.13511e9i − 0.0309970i
\(668\) 0 0
\(669\) −1.93846e11 −0.967724
\(670\) 0 0
\(671\) 8.82220e10i 0.435198i
\(672\) 0 0
\(673\) −3.32886e11 −1.62269 −0.811345 0.584567i \(-0.801264\pi\)
−0.811345 + 0.584567i \(0.801264\pi\)
\(674\) 0 0
\(675\) − 6.14450e10i − 0.295986i
\(676\) 0 0
\(677\) 1.55980e11 0.742530 0.371265 0.928527i \(-0.378924\pi\)
0.371265 + 0.928527i \(0.378924\pi\)
\(678\) 0 0
\(679\) 4.91776e11i 2.31360i
\(680\) 0 0
\(681\) −1.49627e11 −0.695701
\(682\) 0 0
\(683\) 2.38756e10i 0.109716i 0.998494 + 0.0548581i \(0.0174707\pi\)
−0.998494 + 0.0548581i \(0.982529\pi\)
\(684\) 0 0
\(685\) 1.69287e11 0.768887
\(686\) 0 0
\(687\) 3.10025e11i 1.39178i
\(688\) 0 0
\(689\) 6.19799e10 0.275026
\(690\) 0 0
\(691\) − 3.49556e11i − 1.53322i −0.642113 0.766610i \(-0.721942\pi\)
0.642113 0.766610i \(-0.278058\pi\)
\(692\) 0 0
\(693\) −8.27962e11 −3.58986
\(694\) 0 0
\(695\) − 1.45146e11i − 0.622107i
\(696\) 0 0
\(697\) 3.90301e11 1.65374
\(698\) 0 0
\(699\) 8.95839e10i 0.375250i
\(700\) 0 0
\(701\) 2.57887e10 0.106796 0.0533982 0.998573i \(-0.482995\pi\)
0.0533982 + 0.998573i \(0.482995\pi\)
\(702\) 0 0
\(703\) 1.07426e11i 0.439834i
\(704\) 0 0
\(705\) −1.34782e11 −0.545602
\(706\) 0 0
\(707\) 7.73749e11i 3.09686i
\(708\) 0 0
\(709\) 1.18322e11 0.468251 0.234126 0.972206i \(-0.424777\pi\)
0.234126 + 0.972206i \(0.424777\pi\)
\(710\) 0 0
\(711\) − 5.43882e11i − 2.12827i
\(712\) 0 0
\(713\) 2.04187e10 0.0790079
\(714\) 0 0
\(715\) − 5.22731e10i − 0.200011i
\(716\) 0 0
\(717\) 6.58064e11 2.48996
\(718\) 0 0
\(719\) 1.28179e11i 0.479624i 0.970819 + 0.239812i \(0.0770858\pi\)
−0.970819 + 0.239812i \(0.922914\pi\)
\(720\) 0 0
\(721\) 4.27173e11 1.58075
\(722\) 0 0
\(723\) − 7.11721e11i − 2.60469i
\(724\) 0 0
\(725\) −3.25292e9 −0.0117739
\(726\) 0 0
\(727\) 2.11824e11i 0.758295i 0.925336 + 0.379148i \(0.123783\pi\)
−0.925336 + 0.379148i \(0.876217\pi\)
\(728\) 0 0
\(729\) 3.72333e11 1.31832
\(730\) 0 0
\(731\) 3.24272e11i 1.13564i
\(732\) 0 0
\(733\) −2.18401e11 −0.756552 −0.378276 0.925693i \(-0.623483\pi\)
−0.378276 + 0.925693i \(0.623483\pi\)
\(734\) 0 0
\(735\) − 3.74674e11i − 1.28382i
\(736\) 0 0
\(737\) −1.80129e11 −0.610541
\(738\) 0 0
\(739\) 1.87281e11i 0.627936i 0.949433 + 0.313968i \(0.101659\pi\)
−0.949433 + 0.313968i \(0.898341\pi\)
\(740\) 0 0
\(741\) −1.40321e11 −0.465424
\(742\) 0 0
\(743\) − 4.43366e11i − 1.45481i −0.686207 0.727406i \(-0.740726\pi\)
0.686207 0.727406i \(-0.259274\pi\)
\(744\) 0 0
\(745\) 1.71608e11 0.557074
\(746\) 0 0
\(747\) − 1.86583e11i − 0.599224i
\(748\) 0 0
\(749\) −2.04631e11 −0.650196
\(750\) 0 0
\(751\) − 1.63129e11i − 0.512827i −0.966567 0.256414i \(-0.917459\pi\)
0.966567 0.256414i \(-0.0825409\pi\)
\(752\) 0 0
\(753\) −3.32090e11 −1.03294
\(754\) 0 0
\(755\) 1.51260e11i 0.465516i
\(756\) 0 0
\(757\) −8.66867e10 −0.263979 −0.131989 0.991251i \(-0.542136\pi\)
−0.131989 + 0.991251i \(0.542136\pi\)
\(758\) 0 0
\(759\) − 3.45875e11i − 1.04220i
\(760\) 0 0
\(761\) 3.59912e11 1.07314 0.536571 0.843855i \(-0.319719\pi\)
0.536571 + 0.843855i \(0.319719\pi\)
\(762\) 0 0
\(763\) 7.92573e11i 2.33852i
\(764\) 0 0
\(765\) −3.49222e11 −1.01966
\(766\) 0 0
\(767\) − 1.84938e11i − 0.534373i
\(768\) 0 0
\(769\) −6.61724e11 −1.89222 −0.946110 0.323845i \(-0.895024\pi\)
−0.946110 + 0.323845i \(0.895024\pi\)
\(770\) 0 0
\(771\) − 7.21569e11i − 2.04202i
\(772\) 0 0
\(773\) 2.24564e11 0.628958 0.314479 0.949264i \(-0.398170\pi\)
0.314479 + 0.949264i \(0.398170\pi\)
\(774\) 0 0
\(775\) − 1.08263e10i − 0.0300105i
\(776\) 0 0
\(777\) −6.22063e11 −1.70667
\(778\) 0 0
\(779\) − 3.58691e11i − 0.974027i
\(780\) 0 0
\(781\) 3.17954e11 0.854594
\(782\) 0 0
\(783\) 3.27477e10i 0.0871231i
\(784\) 0 0
\(785\) 1.79998e11 0.474013
\(786\) 0 0
\(787\) − 6.78642e11i − 1.76906i −0.466486 0.884528i \(-0.654480\pi\)
0.466486 0.884528i \(-0.345520\pi\)
\(788\) 0 0
\(789\) 1.71553e11 0.442682
\(790\) 0 0
\(791\) 2.69008e11i 0.687163i
\(792\) 0 0
\(793\) −5.64447e10 −0.142735
\(794\) 0 0
\(795\) − 2.17441e11i − 0.544343i
\(796\) 0 0
\(797\) −2.55700e11 −0.633720 −0.316860 0.948472i \(-0.602628\pi\)
−0.316860 + 0.948472i \(0.602628\pi\)
\(798\) 0 0
\(799\) 3.57068e11i 0.876121i
\(800\) 0 0
\(801\) 6.66996e11 1.62029
\(802\) 0 0
\(803\) 4.07822e10i 0.0980863i
\(804\) 0 0
\(805\) 1.62291e11 0.386465
\(806\) 0 0
\(807\) 7.36401e11i 1.73628i
\(808\) 0 0
\(809\) 4.12911e10 0.0963968 0.0481984 0.998838i \(-0.484652\pi\)
0.0481984 + 0.998838i \(0.484652\pi\)
\(810\) 0 0
\(811\) 2.06089e11i 0.476399i 0.971216 + 0.238200i \(0.0765573\pi\)
−0.971216 + 0.238200i \(0.923443\pi\)
\(812\) 0 0
\(813\) −9.23087e10 −0.211291
\(814\) 0 0
\(815\) − 1.88558e11i − 0.427381i
\(816\) 0 0
\(817\) 2.98010e11 0.668872
\(818\) 0 0
\(819\) − 5.29732e11i − 1.17739i
\(820\) 0 0
\(821\) −8.40243e11 −1.84941 −0.924703 0.380688i \(-0.875687\pi\)
−0.924703 + 0.380688i \(0.875687\pi\)
\(822\) 0 0
\(823\) − 3.94949e11i − 0.860878i −0.902620 0.430439i \(-0.858359\pi\)
0.902620 0.430439i \(-0.141641\pi\)
\(824\) 0 0
\(825\) −1.83387e11 −0.395871
\(826\) 0 0
\(827\) − 3.63473e11i − 0.777051i −0.921438 0.388526i \(-0.872984\pi\)
0.921438 0.388526i \(-0.127016\pi\)
\(828\) 0 0
\(829\) 4.62310e11 0.978847 0.489424 0.872046i \(-0.337207\pi\)
0.489424 + 0.872046i \(0.337207\pi\)
\(830\) 0 0
\(831\) − 1.17405e12i − 2.46197i
\(832\) 0 0
\(833\) −9.92595e11 −2.06154
\(834\) 0 0
\(835\) − 1.27331e11i − 0.261933i
\(836\) 0 0
\(837\) −1.08990e11 −0.222067
\(838\) 0 0
\(839\) 1.39033e11i 0.280588i 0.990110 + 0.140294i \(0.0448049\pi\)
−0.990110 + 0.140294i \(0.955195\pi\)
\(840\) 0 0
\(841\) −4.98513e11 −0.996534
\(842\) 0 0
\(843\) − 1.16383e11i − 0.230452i
\(844\) 0 0
\(845\) −1.94559e11 −0.381614
\(846\) 0 0
\(847\) 3.07156e11i 0.596795i
\(848\) 0 0
\(849\) −3.56763e11 −0.686672
\(850\) 0 0
\(851\) − 1.69415e11i − 0.323024i
\(852\) 0 0
\(853\) 2.95120e11 0.557446 0.278723 0.960372i \(-0.410089\pi\)
0.278723 + 0.960372i \(0.410089\pi\)
\(854\) 0 0
\(855\) 3.20939e11i 0.600563i
\(856\) 0 0
\(857\) 2.93094e11 0.543355 0.271678 0.962388i \(-0.412422\pi\)
0.271678 + 0.962388i \(0.412422\pi\)
\(858\) 0 0
\(859\) 5.58133e11i 1.02510i 0.858658 + 0.512549i \(0.171299\pi\)
−0.858658 + 0.512549i \(0.828701\pi\)
\(860\) 0 0
\(861\) 2.07704e12 3.77949
\(862\) 0 0
\(863\) 3.25698e11i 0.587181i 0.955931 + 0.293590i \(0.0948502\pi\)
−0.955931 + 0.293590i \(0.905150\pi\)
\(864\) 0 0
\(865\) −2.69542e11 −0.481463
\(866\) 0 0
\(867\) 4.61339e11i 0.816477i
\(868\) 0 0
\(869\) −7.56643e11 −1.32682
\(870\) 0 0
\(871\) − 1.15247e11i − 0.200243i
\(872\) 0 0
\(873\) 1.53370e12 2.64048
\(874\) 0 0
\(875\) − 8.60487e10i − 0.146795i
\(876\) 0 0
\(877\) 2.02891e11 0.342976 0.171488 0.985186i \(-0.445143\pi\)
0.171488 + 0.985186i \(0.445143\pi\)
\(878\) 0 0
\(879\) − 1.63236e12i − 2.73439i
\(880\) 0 0
\(881\) −6.22197e10 −0.103282 −0.0516409 0.998666i \(-0.516445\pi\)
−0.0516409 + 0.998666i \(0.516445\pi\)
\(882\) 0 0
\(883\) − 7.69290e10i − 0.126546i −0.997996 0.0632729i \(-0.979846\pi\)
0.997996 0.0632729i \(-0.0201538\pi\)
\(884\) 0 0
\(885\) −6.48809e11 −1.05765
\(886\) 0 0
\(887\) − 7.30650e10i − 0.118036i −0.998257 0.0590180i \(-0.981203\pi\)
0.998257 0.0590180i \(-0.0187969\pi\)
\(888\) 0 0
\(889\) 1.37520e12 2.20170
\(890\) 0 0
\(891\) 4.67645e11i 0.742003i
\(892\) 0 0
\(893\) 3.28150e11 0.516020
\(894\) 0 0
\(895\) − 2.83324e11i − 0.441562i
\(896\) 0 0
\(897\) 2.21291e11 0.341818
\(898\) 0 0
\(899\) 5.76996e9i 0.00883353i
\(900\) 0 0
\(901\) −5.76050e11 −0.874100
\(902\) 0 0
\(903\) 1.72566e12i 2.59540i
\(904\) 0 0
\(905\) −4.23475e10 −0.0631297
\(906\) 0 0
\(907\) 7.63733e11i 1.12853i 0.825594 + 0.564264i \(0.190840\pi\)
−0.825594 + 0.564264i \(0.809160\pi\)
\(908\) 0 0
\(909\) 2.41308e12 3.53441
\(910\) 0 0
\(911\) 6.04985e11i 0.878357i 0.898400 + 0.439178i \(0.144730\pi\)
−0.898400 + 0.439178i \(0.855270\pi\)
\(912\) 0 0
\(913\) −2.59573e11 −0.373573
\(914\) 0 0
\(915\) 1.98022e11i 0.282507i
\(916\) 0 0
\(917\) 5.87904e11 0.831436
\(918\) 0 0
\(919\) 1.09773e12i 1.53898i 0.638657 + 0.769492i \(0.279490\pi\)
−0.638657 + 0.769492i \(0.720510\pi\)
\(920\) 0 0
\(921\) 2.39046e12 3.32233
\(922\) 0 0
\(923\) 2.03428e11i 0.280287i
\(924\) 0 0
\(925\) −8.98264e10 −0.122698
\(926\) 0 0
\(927\) − 1.33222e12i − 1.80408i
\(928\) 0 0
\(929\) 5.68272e11 0.762945 0.381473 0.924380i \(-0.375417\pi\)
0.381473 + 0.924380i \(0.375417\pi\)
\(930\) 0 0
\(931\) 9.12208e11i 1.21421i
\(932\) 0 0
\(933\) −1.18311e12 −1.56135
\(934\) 0 0
\(935\) 4.85834e11i 0.635685i
\(936\) 0 0
\(937\) 1.49600e11 0.194076 0.0970382 0.995281i \(-0.469063\pi\)
0.0970382 + 0.995281i \(0.469063\pi\)
\(938\) 0 0
\(939\) − 1.34136e12i − 1.72537i
\(940\) 0 0
\(941\) 5.28765e11 0.674379 0.337190 0.941437i \(-0.390524\pi\)
0.337190 + 0.941437i \(0.390524\pi\)
\(942\) 0 0
\(943\) 5.65671e11i 0.715348i
\(944\) 0 0
\(945\) −8.66266e11 −1.08624
\(946\) 0 0
\(947\) − 9.04370e11i − 1.12447i −0.826979 0.562233i \(-0.809943\pi\)
0.826979 0.562233i \(-0.190057\pi\)
\(948\) 0 0
\(949\) −2.60926e10 −0.0321701
\(950\) 0 0
\(951\) 9.02811e11i 1.10376i
\(952\) 0 0
\(953\) −5.71895e11 −0.693337 −0.346669 0.937988i \(-0.612687\pi\)
−0.346669 + 0.937988i \(0.612687\pi\)
\(954\) 0 0
\(955\) − 1.52664e11i − 0.183536i
\(956\) 0 0
\(957\) 9.77379e10 0.116524
\(958\) 0 0
\(959\) − 2.38665e12i − 2.82173i
\(960\) 0 0
\(961\) 8.33688e11 0.977484
\(962\) 0 0
\(963\) 6.38181e11i 0.742060i
\(964\) 0 0
\(965\) 4.24867e11 0.489941
\(966\) 0 0
\(967\) − 9.92056e11i − 1.13457i −0.823522 0.567284i \(-0.807994\pi\)
0.823522 0.567284i \(-0.192006\pi\)
\(968\) 0 0
\(969\) 1.30416e12 1.47923
\(970\) 0 0
\(971\) − 4.62553e11i − 0.520336i −0.965563 0.260168i \(-0.916222\pi\)
0.965563 0.260168i \(-0.0837780\pi\)
\(972\) 0 0
\(973\) −2.04630e12 −2.28306
\(974\) 0 0
\(975\) − 1.17332e11i − 0.129837i
\(976\) 0 0
\(977\) 1.35557e11 0.148780 0.0743899 0.997229i \(-0.476299\pi\)
0.0743899 + 0.997229i \(0.476299\pi\)
\(978\) 0 0
\(979\) − 9.27919e11i − 1.01013i
\(980\) 0 0
\(981\) 2.47179e12 2.66892
\(982\) 0 0
\(983\) − 1.95656e10i − 0.0209546i −0.999945 0.0104773i \(-0.996665\pi\)
0.999945 0.0104773i \(-0.00333509\pi\)
\(984\) 0 0
\(985\) −5.55580e11 −0.590204
\(986\) 0 0
\(987\) 1.90019e12i 2.00230i
\(988\) 0 0
\(989\) −4.69975e11 −0.491235
\(990\) 0 0
\(991\) 4.63152e11i 0.480208i 0.970747 + 0.240104i \(0.0771815\pi\)
−0.970747 + 0.240104i \(0.922818\pi\)
\(992\) 0 0
\(993\) −3.19619e12 −3.28727
\(994\) 0 0
\(995\) 4.71628e11i 0.481180i
\(996\) 0 0
\(997\) 5.69988e11 0.576879 0.288439 0.957498i \(-0.406864\pi\)
0.288439 + 0.957498i \(0.406864\pi\)
\(998\) 0 0
\(999\) 9.04296e11i 0.907922i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 320.9.b.d.191.15 16
4.3 odd 2 inner 320.9.b.d.191.2 16
8.3 odd 2 20.9.b.a.11.11 16
8.5 even 2 20.9.b.a.11.12 yes 16
24.5 odd 2 180.9.c.a.91.5 16
24.11 even 2 180.9.c.a.91.6 16
40.3 even 4 100.9.d.c.99.7 32
40.13 odd 4 100.9.d.c.99.25 32
40.19 odd 2 100.9.b.d.51.6 16
40.27 even 4 100.9.d.c.99.26 32
40.29 even 2 100.9.b.d.51.5 16
40.37 odd 4 100.9.d.c.99.8 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.9.b.a.11.11 16 8.3 odd 2
20.9.b.a.11.12 yes 16 8.5 even 2
100.9.b.d.51.5 16 40.29 even 2
100.9.b.d.51.6 16 40.19 odd 2
100.9.d.c.99.7 32 40.3 even 4
100.9.d.c.99.8 32 40.37 odd 4
100.9.d.c.99.25 32 40.13 odd 4
100.9.d.c.99.26 32 40.27 even 4
180.9.c.a.91.5 16 24.5 odd 2
180.9.c.a.91.6 16 24.11 even 2
320.9.b.d.191.2 16 4.3 odd 2 inner
320.9.b.d.191.15 16 1.1 even 1 trivial