L(s) = 1 | + (14.9 − 5.65i)2-s + (191. − 169. i)4-s + 279.·5-s − 2.97e3i·7-s + (1.91e3 − 3.62e3i)8-s + (4.18e3 − 1.58e3i)10-s − 2.80e4i·11-s + 3.56e4·13-s + (−1.68e4 − 4.45e4i)14-s + (8.16e3 − 6.50e4i)16-s − 5.93e4·17-s + 1.46e5i·19-s + (5.36e4 − 4.73e4i)20-s + (−1.58e5 − 4.20e5i)22-s + 3.09e5i·23-s + ⋯ |
L(s) = 1 | + (0.935 − 0.353i)2-s + (0.749 − 0.661i)4-s + 0.447·5-s − 1.23i·7-s + (0.467 − 0.884i)8-s + (0.418 − 0.158i)10-s − 1.91i·11-s + 1.24·13-s + (−0.438 − 1.15i)14-s + (0.124 − 0.992i)16-s − 0.710·17-s + 1.12i·19-s + (0.335 − 0.295i)20-s + (−0.677 − 1.79i)22-s + 1.10i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.749 + 0.661i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.749 + 0.661i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{9}{2})\) |
\(\approx\) |
\(4.172938380\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.172938380\) |
\(L(5)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-14.9 + 5.65i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 - 279.T \) |
good | 7 | \( 1 + 2.97e3iT - 5.76e6T^{2} \) |
| 11 | \( 1 + 2.80e4iT - 2.14e8T^{2} \) |
| 13 | \( 1 - 3.56e4T + 8.15e8T^{2} \) |
| 17 | \( 1 + 5.93e4T + 6.97e9T^{2} \) |
| 19 | \( 1 - 1.46e5iT - 1.69e10T^{2} \) |
| 23 | \( 1 - 3.09e5iT - 7.83e10T^{2} \) |
| 29 | \( 1 + 1.02e6T + 5.00e11T^{2} \) |
| 31 | \( 1 + 1.62e5iT - 8.52e11T^{2} \) |
| 37 | \( 1 - 8.64e5T + 3.51e12T^{2} \) |
| 41 | \( 1 + 1.51e6T + 7.98e12T^{2} \) |
| 43 | \( 1 + 2.39e6iT - 1.16e13T^{2} \) |
| 47 | \( 1 + 2.15e6iT - 2.38e13T^{2} \) |
| 53 | \( 1 - 9.78e6T + 6.22e13T^{2} \) |
| 59 | \( 1 - 7.13e6iT - 1.46e14T^{2} \) |
| 61 | \( 1 + 5.43e6T + 1.91e14T^{2} \) |
| 67 | \( 1 - 1.02e7iT - 4.06e14T^{2} \) |
| 71 | \( 1 + 3.55e7iT - 6.45e14T^{2} \) |
| 73 | \( 1 + 3.90e6T + 8.06e14T^{2} \) |
| 79 | \( 1 + 3.17e6iT - 1.51e15T^{2} \) |
| 83 | \( 1 + 4.52e7iT - 2.25e15T^{2} \) |
| 89 | \( 1 + 4.70e7T + 3.93e15T^{2} \) |
| 97 | \( 1 + 1.22e7T + 7.83e15T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.95708568621917549189002115426, −10.21391402037601807930061744684, −8.824143595949129650481085827114, −7.48858066342319500241417128975, −6.22054388928518242121867458231, −5.58920869251927987723537724535, −3.93513767171014666540744819711, −3.39209034924814448431236710173, −1.65460087447422009133068963874, −0.66411484865261720987435053928,
1.85537870783315910909613390404, 2.63051155307174455705926928247, 4.24014062089085409062533311428, 5.19101849291672779618847231035, 6.25238791389427180963692138518, 7.10264854400192369681046855088, 8.493389194201133996954941135750, 9.408286567295937696282307019183, 10.83069785838860819413599602183, 11.77578118933270374031583537979