Properties

Label 2-180-4.3-c8-0-62
Degree $2$
Conductor $180$
Sign $0.842 + 0.539i$
Analytic cond. $73.3281$
Root an. cond. $8.56318$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (15.3 + 4.49i)2-s + (215. + 138. i)4-s − 279.·5-s + 820. i·7-s + (2.68e3 + 3.08e3i)8-s + (−4.29e3 − 1.25e3i)10-s − 2.11e4i·11-s − 3.66e4·13-s + (−3.69e3 + 1.26e4i)14-s + (2.74e4 + 5.95e4i)16-s + 1.10e5·17-s − 1.84e5i·19-s + (−6.02e4 − 3.85e4i)20-s + (9.50e4 − 3.24e5i)22-s − 1.81e5i·23-s + ⋯
L(s)  = 1  + (0.959 + 0.280i)2-s + (0.842 + 0.539i)4-s − 0.447·5-s + 0.341i·7-s + (0.656 + 0.754i)8-s + (−0.429 − 0.125i)10-s − 1.44i·11-s − 1.28·13-s + (−0.0960 + 0.328i)14-s + (0.418 + 0.908i)16-s + 1.32·17-s − 1.41i·19-s + (−0.376 − 0.241i)20-s + (0.405 − 1.38i)22-s − 0.650i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.842 + 0.539i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.842 + 0.539i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(180\)    =    \(2^{2} \cdot 3^{2} \cdot 5\)
Sign: $0.842 + 0.539i$
Analytic conductor: \(73.3281\)
Root analytic conductor: \(8.56318\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{180} (91, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 180,\ (\ :4),\ 0.842 + 0.539i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(3.389437888\)
\(L(\frac12)\) \(\approx\) \(3.389437888\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-15.3 - 4.49i)T \)
3 \( 1 \)
5 \( 1 + 279.T \)
good7 \( 1 - 820. iT - 5.76e6T^{2} \)
11 \( 1 + 2.11e4iT - 2.14e8T^{2} \)
13 \( 1 + 3.66e4T + 8.15e8T^{2} \)
17 \( 1 - 1.10e5T + 6.97e9T^{2} \)
19 \( 1 + 1.84e5iT - 1.69e10T^{2} \)
23 \( 1 + 1.81e5iT - 7.83e10T^{2} \)
29 \( 1 - 2.29e5T + 5.00e11T^{2} \)
31 \( 1 - 3.88e5iT - 8.52e11T^{2} \)
37 \( 1 - 1.32e6T + 3.51e12T^{2} \)
41 \( 1 - 3.03e5T + 7.98e12T^{2} \)
43 \( 1 - 9.62e5iT - 1.16e13T^{2} \)
47 \( 1 + 8.76e6iT - 2.38e13T^{2} \)
53 \( 1 - 5.77e5T + 6.22e13T^{2} \)
59 \( 1 - 4.11e6iT - 1.46e14T^{2} \)
61 \( 1 - 2.10e7T + 1.91e14T^{2} \)
67 \( 1 + 3.85e7iT - 4.06e14T^{2} \)
71 \( 1 + 2.07e7iT - 6.45e14T^{2} \)
73 \( 1 + 2.70e7T + 8.06e14T^{2} \)
79 \( 1 - 5.62e7iT - 1.51e15T^{2} \)
83 \( 1 + 6.22e7iT - 2.25e15T^{2} \)
89 \( 1 + 6.04e7T + 3.93e15T^{2} \)
97 \( 1 - 1.31e8T + 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.43463582717383751305968186624, −10.34171741265377169514602128798, −8.816272092765765803303088800057, −7.82434543305517489985104947105, −6.82478769256624288366206809475, −5.64351290719289509791027442569, −4.75321370656399039989552381579, −3.39186311100081611047657914846, −2.52010138560144520678575583432, −0.60130929411634214413318058648, 1.19703306123453533637286194177, 2.45140894703455375454525774213, 3.77090975054320678575558011887, 4.68650923427147748324266064806, 5.76529700670259423019265893637, 7.22329769515278412846491787504, 7.71395322351268920496723387256, 9.794040509580085698282602071852, 10.18912072479747691845727620594, 11.62170357732257411237877727068

Graph of the $Z$-function along the critical line