Properties

Label 17400.2.a
Level 1740017400
Weight 22
Character orbit 17400.a
Rep. character χ17400(1,)\chi_{17400}(1,\cdot)
Character field Q\Q
Dimension 266266
Newform subspaces 8686
Sturm bound 72007200

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 17400=2335229 17400 = 2^{3} \cdot 3 \cdot 5^{2} \cdot 29
Weight: k k == 2 2
Character orbit: [χ][\chi] == 17400.a (trivial)
Character field: Q\Q
Newform subspaces: 86 86
Sturm bound: 72007200

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ0(17400))M_{2}(\Gamma_0(17400)).

Total New Old
Modular forms 3648 266 3382
Cusp forms 3553 266 3287
Eisenstein series 95 0 95

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

2233552929FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
++++++++++21321315151981982082081515193193550055
++++++--24024015152252252342341515219219660066
++++-++-23923919192202202332331919214214660066
++++--++21821817172012012122121717195195660066
++-++++-24324318182252252372371818219219660066
++-++-++21621615152012012102101515195195660066
++--++++21721715152022022112111515196196660066
++----23823819192192192322321919213213660066
-++++++-22522515152102102192191515204204660066
-++++-++23423415152192192282281515213213660066
-++-++++23523517172182182292291717212212660066
-++---22022019192012012142141919195195660066
--++++++23123115152162162252251515210210660066
--++--22222218182042042162161818198198660066
---++-22122119192022022152151919196196660066
----++23623615152212212302301515215215660066
Plus space++180018001241241676167617531753124124162916294747004747
Minus space-184818481421421706170618001800142142165816584848004848

Trace form

266q+2q3+4q7+266q9+8q11+4q13+8q2124q23+2q27+4q31+8q37+4q3932q41+16q43+40q47+246q498q53+12q57+28q59++8q99+O(q100) 266 q + 2 q^{3} + 4 q^{7} + 266 q^{9} + 8 q^{11} + 4 q^{13} + 8 q^{21} - 24 q^{23} + 2 q^{27} + 4 q^{31} + 8 q^{37} + 4 q^{39} - 32 q^{41} + 16 q^{43} + 40 q^{47} + 246 q^{49} - 8 q^{53} + 12 q^{57} + 28 q^{59}+ \cdots + 8 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ0(17400))S_{2}^{\mathrm{new}}(\Gamma_0(17400)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 3 5 29
17400.2.a.a 17400.a 1.a 11 138.940138.940 Q\Q None 00 1-1 00 4-4 ++ ++ - ++ SU(2)\mathrm{SU}(2) qq34q7+q9+2q11+2q13+q-q^{3}-4q^{7}+q^{9}+2q^{11}+2q^{13}+\cdots
17400.2.a.b 17400.a 1.a 11 138.940138.940 Q\Q None 00 1-1 00 4-4 - ++ ++ - SU(2)\mathrm{SU}(2) qq34q7+q9+4q11+2q13+q-q^{3}-4q^{7}+q^{9}+4q^{11}+2q^{13}+\cdots
17400.2.a.c 17400.a 1.a 11 138.940138.940 Q\Q None 00 1-1 00 3-3 - ++ ++ ++ SU(2)\mathrm{SU}(2) qq33q7+q92q11q13+q-q^{3}-3q^{7}+q^{9}-2q^{11}-q^{13}+\cdots
17400.2.a.d 17400.a 1.a 11 138.940138.940 Q\Q None 00 1-1 00 3-3 - ++ ++ ++ SU(2)\mathrm{SU}(2) qq33q7+q9+q11q133q17+q-q^{3}-3q^{7}+q^{9}+q^{11}-q^{13}-3q^{17}+\cdots
17400.2.a.e 17400.a 1.a 11 138.940138.940 Q\Q None 00 1-1 00 2-2 ++ ++ - - SU(2)\mathrm{SU}(2) qq32q7+q94q114q13+q-q^{3}-2q^{7}+q^{9}-4q^{11}-4q^{13}+\cdots
17400.2.a.f 17400.a 1.a 11 138.940138.940 Q\Q None 00 1-1 00 2-2 - ++ - - SU(2)\mathrm{SU}(2) qq32q7+q94q132q17+q-q^{3}-2q^{7}+q^{9}-4q^{13}-2q^{17}+\cdots
17400.2.a.g 17400.a 1.a 11 138.940138.940 Q\Q None 00 1-1 00 2-2 - ++ - ++ SU(2)\mathrm{SU}(2) qq32q7+q9+q114q13+q-q^{3}-2q^{7}+q^{9}+q^{11}-4q^{13}+\cdots
17400.2.a.h 17400.a 1.a 11 138.940138.940 Q\Q None 00 1-1 00 2-2 ++ ++ ++ ++ SU(2)\mathrm{SU}(2) qq32q7+q9+2q11+2q13+q-q^{3}-2q^{7}+q^{9}+2q^{11}+2q^{13}+\cdots
17400.2.a.i 17400.a 1.a 11 138.940138.940 Q\Q None 00 1-1 00 1-1 - ++ ++ - SU(2)\mathrm{SU}(2) qq3q7+q93q113q13+q-q^{3}-q^{7}+q^{9}-3q^{11}-3q^{13}+\cdots
17400.2.a.j 17400.a 1.a 11 138.940138.940 Q\Q None 00 1-1 00 1-1 - ++ ++ ++ SU(2)\mathrm{SU}(2) qq3q7+q92q114q13+q-q^{3}-q^{7}+q^{9}-2q^{11}-4q^{13}+\cdots
17400.2.a.k 17400.a 1.a 11 138.940138.940 Q\Q None 00 1-1 00 00 ++ ++ ++ - SU(2)\mathrm{SU}(2) qq3+q94q11+2q13+6q17+q-q^{3}+q^{9}-4q^{11}+2q^{13}+6q^{17}+\cdots
17400.2.a.l 17400.a 1.a 11 138.940138.940 Q\Q None 00 1-1 00 00 - ++ ++ - SU(2)\mathrm{SU}(2) qq3+q9+2q13+2q17q27+q-q^{3}+q^{9}+2q^{13}+2q^{17}-q^{27}+\cdots
17400.2.a.m 17400.a 1.a 11 138.940138.940 Q\Q None 00 1-1 00 00 - ++ - ++ SU(2)\mathrm{SU}(2) qq3+q9+2q11+4q13+6q17+q-q^{3}+q^{9}+2q^{11}+4q^{13}+6q^{17}+\cdots
17400.2.a.n 17400.a 1.a 11 138.940138.940 Q\Q None 00 1-1 00 11 ++ ++ ++ ++ SU(2)\mathrm{SU}(2) qq3+q7+q93q11+7q13+q-q^{3}+q^{7}+q^{9}-3q^{11}+7q^{13}+\cdots
17400.2.a.o 17400.a 1.a 11 138.940138.940 Q\Q None 00 1-1 00 22 - ++ ++ - SU(2)\mathrm{SU}(2) qq3+2q7+q92q114q13+q-q^{3}+2q^{7}+q^{9}-2q^{11}-4q^{13}+\cdots
17400.2.a.p 17400.a 1.a 11 138.940138.940 Q\Q None 00 1-1 00 22 - ++ ++ ++ SU(2)\mathrm{SU}(2) qq3+2q7+q92q11+2q13+q-q^{3}+2q^{7}+q^{9}-2q^{11}+2q^{13}+\cdots
17400.2.a.q 17400.a 1.a 11 138.940138.940 Q\Q None 00 1-1 00 22 - ++ ++ ++ SU(2)\mathrm{SU}(2) qq3+2q7+q9+q11+2q13+q-q^{3}+2q^{7}+q^{9}+q^{11}+2q^{13}+\cdots
17400.2.a.r 17400.a 1.a 11 138.940138.940 Q\Q None 00 1-1 00 22 - ++ ++ - SU(2)\mathrm{SU}(2) qq3+2q7+q9+3q11+6q13+q-q^{3}+2q^{7}+q^{9}+3q^{11}+6q^{13}+\cdots
17400.2.a.s 17400.a 1.a 11 138.940138.940 Q\Q None 00 1-1 00 22 - ++ ++ ++ SU(2)\mathrm{SU}(2) qq3+2q7+q9+6q116q13+q-q^{3}+2q^{7}+q^{9}+6q^{11}-6q^{13}+\cdots
17400.2.a.t 17400.a 1.a 11 138.940138.940 Q\Q None 00 1-1 00 33 ++ ++ ++ - SU(2)\mathrm{SU}(2) qq3+3q7+q9+5q11+5q13+q-q^{3}+3q^{7}+q^{9}+5q^{11}+5q^{13}+\cdots
17400.2.a.u 17400.a 1.a 11 138.940138.940 Q\Q None 00 1-1 00 44 - ++ - ++ SU(2)\mathrm{SU}(2) qq3+4q7+q92q114q13+q-q^{3}+4q^{7}+q^{9}-2q^{11}-4q^{13}+\cdots
17400.2.a.v 17400.a 1.a 11 138.940138.940 Q\Q None 00 1-1 00 44 ++ ++ ++ ++ SU(2)\mathrm{SU}(2) qq3+4q7+q9+2q114q13+q-q^{3}+4q^{7}+q^{9}+2q^{11}-4q^{13}+\cdots
17400.2.a.w 17400.a 1.a 11 138.940138.940 Q\Q None 00 1-1 00 55 - ++ ++ - SU(2)\mathrm{SU}(2) qq3+5q7+q95q11q13+q-q^{3}+5q^{7}+q^{9}-5q^{11}-q^{13}+\cdots
17400.2.a.x 17400.a 1.a 11 138.940138.940 Q\Q None 00 11 00 4-4 ++ - - ++ SU(2)\mathrm{SU}(2) q+q34q7+q92q11+4q13+q+q^{3}-4q^{7}+q^{9}-2q^{11}+4q^{13}+\cdots
17400.2.a.y 17400.a 1.a 11 138.940138.940 Q\Q None 00 11 00 4-4 - - - ++ SU(2)\mathrm{SU}(2) q+q34q7+q9+2q11+4q13+q+q^{3}-4q^{7}+q^{9}+2q^{11}+4q^{13}+\cdots
17400.2.a.z 17400.a 1.a 11 138.940138.940 Q\Q None 00 11 00 3-3 ++ - ++ - SU(2)\mathrm{SU}(2) q+q33q7+q95q11q13+q+q^{3}-3q^{7}+q^{9}-5q^{11}-q^{13}+\cdots
17400.2.a.ba 17400.a 1.a 11 138.940138.940 Q\Q None 00 11 00 3-3 ++ - ++ ++ SU(2)\mathrm{SU}(2) q+q33q7+q9+q11q13+q17+q+q^{3}-3q^{7}+q^{9}+q^{11}-q^{13}+q^{17}+\cdots
17400.2.a.bb 17400.a 1.a 11 138.940138.940 Q\Q None 00 11 00 2-2 - - ++ - SU(2)\mathrm{SU}(2) q+q32q7+q95q112q13+q+q^{3}-2q^{7}+q^{9}-5q^{11}-2q^{13}+\cdots
17400.2.a.bc 17400.a 1.a 11 138.940138.940 Q\Q None 00 11 00 2-2 ++ - ++ - SU(2)\mathrm{SU}(2) q+q32q7+q9+2q11+2q17+q+q^{3}-2q^{7}+q^{9}+2q^{11}+2q^{17}+\cdots
17400.2.a.bd 17400.a 1.a 11 138.940138.940 Q\Q None 00 11 00 2-2 - - ++ ++ SU(2)\mathrm{SU}(2) q+q32q7+q9+6q114q13+q+q^{3}-2q^{7}+q^{9}+6q^{11}-4q^{13}+\cdots
17400.2.a.be 17400.a 1.a 11 138.940138.940 Q\Q None 00 11 00 00 ++ - ++ ++ SU(2)\mathrm{SU}(2) q+q3+q9+4q13+2q17+6q19+q+q^{3}+q^{9}+4q^{13}+2q^{17}+6q^{19}+\cdots
17400.2.a.bf 17400.a 1.a 11 138.940138.940 Q\Q None 00 11 00 00 ++ - - ++ SU(2)\mathrm{SU}(2) q+q3+q9+2q114q136q17+q+q^{3}+q^{9}+2q^{11}-4q^{13}-6q^{17}+\cdots
17400.2.a.bg 17400.a 1.a 11 138.940138.940 Q\Q None 00 11 00 11 - - ++ ++ SU(2)\mathrm{SU}(2) q+q3+q7+q93q11q13+q17+q+q^{3}+q^{7}+q^{9}-3q^{11}-q^{13}+q^{17}+\cdots
17400.2.a.bh 17400.a 1.a 11 138.940138.940 Q\Q None 00 11 00 11 ++ - ++ - SU(2)\mathrm{SU}(2) q+q3+q7+q9q11+3q13q17+q+q^{3}+q^{7}+q^{9}-q^{11}+3q^{13}-q^{17}+\cdots
17400.2.a.bi 17400.a 1.a 11 138.940138.940 Q\Q None 00 11 00 22 - - - - SU(2)\mathrm{SU}(2) q+q3+2q7+q94q11+4q13+q+q^{3}+2q^{7}+q^{9}-4q^{11}+4q^{13}+\cdots
17400.2.a.bj 17400.a 1.a 11 138.940138.940 Q\Q None 00 11 00 22 ++ - - - SU(2)\mathrm{SU}(2) q+q3+2q7+q9+4q13+2q17+q+q^{3}+2q^{7}+q^{9}+4q^{13}+2q^{17}+\cdots
17400.2.a.bk 17400.a 1.a 11 138.940138.940 Q\Q None 00 11 00 22 ++ - - ++ SU(2)\mathrm{SU}(2) q+q3+2q7+q9+q11+4q13+q+q^{3}+2q^{7}+q^{9}+q^{11}+4q^{13}+\cdots
17400.2.a.bl 17400.a 1.a 11 138.940138.940 Q\Q None 00 11 00 22 ++ - ++ ++ SU(2)\mathrm{SU}(2) q+q3+2q7+q9+6q116q13+q+q^{3}+2q^{7}+q^{9}+6q^{11}-6q^{13}+\cdots
17400.2.a.bm 17400.a 1.a 11 138.940138.940 Q\Q None 00 11 00 33 ++ - ++ ++ SU(2)\mathrm{SU}(2) q+q3+3q7+q92q114q13+q+q^{3}+3q^{7}+q^{9}-2q^{11}-4q^{13}+\cdots
17400.2.a.bn 17400.a 1.a 11 138.940138.940 Q\Q None 00 11 00 33 ++ - - ++ SU(2)\mathrm{SU}(2) q+q3+3q7+q92q11+q13+q+q^{3}+3q^{7}+q^{9}-2q^{11}+q^{13}+\cdots
17400.2.a.bo 17400.a 1.a 11 138.940138.940 Q\Q None 00 11 00 33 ++ - ++ ++ SU(2)\mathrm{SU}(2) q+q3+3q7+q9+3q11+q13+q+q^{3}+3q^{7}+q^{9}+3q^{11}+q^{13}+\cdots
17400.2.a.bp 17400.a 1.a 11 138.940138.940 Q\Q None 00 11 00 44 - - - ++ SU(2)\mathrm{SU}(2) q+q3+4q7+q9+2q112q13+q+q^{3}+4q^{7}+q^{9}+2q^{11}-2q^{13}+\cdots
17400.2.a.bq 17400.a 1.a 11 138.940138.940 Q\Q None 00 11 00 44 - - ++ - SU(2)\mathrm{SU}(2) q+q3+4q7+q9+4q112q13+q+q^{3}+4q^{7}+q^{9}+4q^{11}-2q^{13}+\cdots
17400.2.a.br 17400.a 1.a 22 138.940138.940 Q(5)\Q(\sqrt{5}) None 00 2-2 00 4-4 - ++ ++ - SU(2)\mathrm{SU}(2)
17400.2.a.bs 17400.a 1.a 22 138.940138.940 Q(41)\Q(\sqrt{41}) None 00 2-2 00 3-3 - ++ ++ ++ SU(2)\mathrm{SU}(2)
17400.2.a.bt 17400.a 1.a 22 138.940138.940 Q(17)\Q(\sqrt{17}) None 00 2-2 00 1-1 - ++ ++ - SU(2)\mathrm{SU}(2)
17400.2.a.bu 17400.a 1.a 22 138.940138.940 Q(33)\Q(\sqrt{33}) None 00 2-2 00 11 - ++ ++ ++ SU(2)\mathrm{SU}(2)
17400.2.a.bv 17400.a 1.a 22 138.940138.940 Q(17)\Q(\sqrt{17}) None 00 2-2 00 33 ++ ++ ++ ++ SU(2)\mathrm{SU}(2)
17400.2.a.bw 17400.a 1.a 22 138.940138.940 Q(33)\Q(\sqrt{33}) None 00 22 00 4-4 - - ++ ++ SU(2)\mathrm{SU}(2)
17400.2.a.bx 17400.a 1.a 22 138.940138.940 Q(17)\Q(\sqrt{17}) None 00 22 00 3-3 - - ++ ++ SU(2)\mathrm{SU}(2)
17400.2.a.by 17400.a 1.a 22 138.940138.940 Q(17)\Q(\sqrt{17}) None 00 22 00 00 - - ++ - SU(2)\mathrm{SU}(2)
17400.2.a.bz 17400.a 1.a 22 138.940138.940 Q(5)\Q(\sqrt{5}) None 00 22 00 44 ++ - - - SU(2)\mathrm{SU}(2)
17400.2.a.ca 17400.a 1.a 22 138.940138.940 Q(17)\Q(\sqrt{17}) None 00 22 00 55 - - ++ ++ SU(2)\mathrm{SU}(2)
17400.2.a.cb 17400.a 1.a 33 138.940138.940 3.3.961.1 None 00 3-3 00 4-4 ++ ++ ++ - SU(2)\mathrm{SU}(2)
17400.2.a.cc 17400.a 1.a 33 138.940138.940 3.3.940.1 None 00 3-3 00 2-2 - ++ - ++ SU(2)\mathrm{SU}(2)
17400.2.a.cd 17400.a 1.a 33 138.940138.940 3.3.229.1 None 00 33 00 1-1 - - ++ - SU(2)\mathrm{SU}(2)
17400.2.a.ce 17400.a 1.a 33 138.940138.940 3.3.229.1 None 00 33 00 11 - - ++ - SU(2)\mathrm{SU}(2)
17400.2.a.cf 17400.a 1.a 33 138.940138.940 3.3.940.1 None 00 33 00 22 ++ - ++ ++ SU(2)\mathrm{SU}(2)
17400.2.a.cg 17400.a 1.a 44 138.940138.940 4.4.69272.1 None 00 4-4 00 1-1 ++ ++ ++ ++ SU(2)\mathrm{SU}(2)
17400.2.a.ch 17400.a 1.a 44 138.940138.940 4.4.58397.1 None 00 4-4 00 33 ++ ++ ++ - SU(2)\mathrm{SU}(2)
17400.2.a.ci 17400.a 1.a 55 138.940138.940 5.5.21913725.1 None 00 5-5 00 2-2 - ++ - ++ SU(2)\mathrm{SU}(2)
17400.2.a.cj 17400.a 1.a 55 138.940138.940 5.5.18239409.1 None 00 5-5 00 1-1 - ++ ++ - SU(2)\mathrm{SU}(2)
17400.2.a.ck 17400.a 1.a 55 138.940138.940 5.5.1752165.1 None 00 5-5 00 44 - ++ ++ ++ SU(2)\mathrm{SU}(2)
17400.2.a.cl 17400.a 1.a 55 138.940138.940 5.5.1752165.1 None 00 55 00 4-4 ++ - - ++ SU(2)\mathrm{SU}(2)
17400.2.a.cm 17400.a 1.a 55 138.940138.940 5.5.18396776.1 None 00 55 00 1-1 ++ - ++ ++ SU(2)\mathrm{SU}(2)
17400.2.a.cn 17400.a 1.a 55 138.940138.940 5.5.1025428.1 None 00 55 00 1-1 ++ - ++ - SU(2)\mathrm{SU}(2)
17400.2.a.co 17400.a 1.a 55 138.940138.940 5.5.18239409.1 None 00 55 00 11 ++ - - - SU(2)\mathrm{SU}(2)
17400.2.a.cp 17400.a 1.a 55 138.940138.940 5.5.21913725.1 None 00 55 00 22 ++ - ++ ++ SU(2)\mathrm{SU}(2)
17400.2.a.cq 17400.a 1.a 66 138.940138.940 6.6.121002181.1 None 00 6-6 00 7-7 ++ ++ ++ ++ SU(2)\mathrm{SU}(2)
17400.2.a.cr 17400.a 1.a 66 138.940138.940 6.6.62452821.1 None 00 6-6 00 33 ++ ++ ++ - SU(2)\mathrm{SU}(2)
17400.2.a.cs 17400.a 1.a 66 138.940138.940 6.6.70558128.1 None 00 6-6 00 44 - ++ - ++ SU(2)\mathrm{SU}(2)
17400.2.a.ct 17400.a 1.a 66 138.940138.940 6.6.70558128.1 None 00 66 00 4-4 ++ - - ++ SU(2)\mathrm{SU}(2)
17400.2.a.cu 17400.a 1.a 66 138.940138.940 6.6.62452821.1 None 00 66 00 3-3 - - - - SU(2)\mathrm{SU}(2)
17400.2.a.cv 17400.a 1.a 66 138.940138.940 6.6.121002181.1 None 00 66 00 77 - - - ++ SU(2)\mathrm{SU}(2)
17400.2.a.cw 17400.a 1.a 77 138.940138.940 Q[x]/(x7)\mathbb{Q}[x]/(x^{7} - \cdots) None 00 7-7 00 22 - ++ - - SU(2)\mathrm{SU}(2)
17400.2.a.cx 17400.a 1.a 77 138.940138.940 Q[x]/(x7)\mathbb{Q}[x]/(x^{7} - \cdots) None 00 7-7 00 44 ++ ++ - ++ SU(2)\mathrm{SU}(2)
17400.2.a.cy 17400.a 1.a 77 138.940138.940 Q[x]/(x7)\mathbb{Q}[x]/(x^{7} - \cdots) None 00 77 00 4-4 - - ++ ++ SU(2)\mathrm{SU}(2)
17400.2.a.cz 17400.a 1.a 77 138.940138.940 Q[x]/(x7)\mathbb{Q}[x]/(x^{7} - \cdots) None 00 77 00 2-2 ++ - ++ - SU(2)\mathrm{SU}(2)
17400.2.a.da 17400.a 1.a 88 138.940138.940 Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots) None 00 8-8 00 2-2 ++ ++ - - SU(2)\mathrm{SU}(2)
17400.2.a.db 17400.a 1.a 88 138.940138.940 Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots) None 00 8-8 00 22 ++ ++ - - SU(2)\mathrm{SU}(2)
17400.2.a.dc 17400.a 1.a 88 138.940138.940 Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots) None 00 88 00 2-2 - - - - SU(2)\mathrm{SU}(2)
17400.2.a.dd 17400.a 1.a 88 138.940138.940 Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots) None 00 88 00 22 - - ++ - SU(2)\mathrm{SU}(2)
17400.2.a.de 17400.a 1.a 1111 138.940138.940 Q[x]/(x11)\mathbb{Q}[x]/(x^{11} - \cdots) None 00 11-11 00 4-4 - ++ - - SU(2)\mathrm{SU}(2)
17400.2.a.df 17400.a 1.a 1111 138.940138.940 Q[x]/(x11)\mathbb{Q}[x]/(x^{11} - \cdots) None 00 11-11 00 00 ++ ++ - ++ SU(2)\mathrm{SU}(2)
17400.2.a.dg 17400.a 1.a 1111 138.940138.940 Q[x]/(x11)\mathbb{Q}[x]/(x^{11} - \cdots) None 00 1111 00 00 - - - ++ SU(2)\mathrm{SU}(2)
17400.2.a.dh 17400.a 1.a 1111 138.940138.940 Q[x]/(x11)\mathbb{Q}[x]/(x^{11} - \cdots) None 00 1111 00 44 ++ - - - SU(2)\mathrm{SU}(2)

Decomposition of S2old(Γ0(17400))S_{2}^{\mathrm{old}}(\Gamma_0(17400)) into lower level spaces

S2old(Γ0(17400)) S_{2}^{\mathrm{old}}(\Gamma_0(17400)) \simeq S2new(Γ0(15))S_{2}^{\mathrm{new}}(\Gamma_0(15))16^{\oplus 16}\oplusS2new(Γ0(20))S_{2}^{\mathrm{new}}(\Gamma_0(20))16^{\oplus 16}\oplusS2new(Γ0(24))S_{2}^{\mathrm{new}}(\Gamma_0(24))6^{\oplus 6}\oplusS2new(Γ0(29))S_{2}^{\mathrm{new}}(\Gamma_0(29))24^{\oplus 24}\oplusS2new(Γ0(30))S_{2}^{\mathrm{new}}(\Gamma_0(30))12^{\oplus 12}\oplusS2new(Γ0(40))S_{2}^{\mathrm{new}}(\Gamma_0(40))8^{\oplus 8}\oplusS2new(Γ0(50))S_{2}^{\mathrm{new}}(\Gamma_0(50))12^{\oplus 12}\oplusS2new(Γ0(58))S_{2}^{\mathrm{new}}(\Gamma_0(58))18^{\oplus 18}\oplusS2new(Γ0(75))S_{2}^{\mathrm{new}}(\Gamma_0(75))8^{\oplus 8}\oplusS2new(Γ0(87))S_{2}^{\mathrm{new}}(\Gamma_0(87))12^{\oplus 12}\oplusS2new(Γ0(100))S_{2}^{\mathrm{new}}(\Gamma_0(100))8^{\oplus 8}\oplusS2new(Γ0(116))S_{2}^{\mathrm{new}}(\Gamma_0(116))12^{\oplus 12}\oplusS2new(Γ0(120))S_{2}^{\mathrm{new}}(\Gamma_0(120))4^{\oplus 4}\oplusS2new(Γ0(145))S_{2}^{\mathrm{new}}(\Gamma_0(145))16^{\oplus 16}\oplusS2new(Γ0(150))S_{2}^{\mathrm{new}}(\Gamma_0(150))6^{\oplus 6}\oplusS2new(Γ0(174))S_{2}^{\mathrm{new}}(\Gamma_0(174))9^{\oplus 9}\oplusS2new(Γ0(200))S_{2}^{\mathrm{new}}(\Gamma_0(200))4^{\oplus 4}\oplusS2new(Γ0(232))S_{2}^{\mathrm{new}}(\Gamma_0(232))6^{\oplus 6}\oplusS2new(Γ0(290))S_{2}^{\mathrm{new}}(\Gamma_0(290))12^{\oplus 12}\oplusS2new(Γ0(300))S_{2}^{\mathrm{new}}(\Gamma_0(300))4^{\oplus 4}\oplusS2new(Γ0(348))S_{2}^{\mathrm{new}}(\Gamma_0(348))6^{\oplus 6}\oplusS2new(Γ0(435))S_{2}^{\mathrm{new}}(\Gamma_0(435))8^{\oplus 8}\oplusS2new(Γ0(580))S_{2}^{\mathrm{new}}(\Gamma_0(580))8^{\oplus 8}\oplusS2new(Γ0(600))S_{2}^{\mathrm{new}}(\Gamma_0(600))2^{\oplus 2}\oplusS2new(Γ0(696))S_{2}^{\mathrm{new}}(\Gamma_0(696))3^{\oplus 3}\oplusS2new(Γ0(725))S_{2}^{\mathrm{new}}(\Gamma_0(725))8^{\oplus 8}\oplusS2new(Γ0(870))S_{2}^{\mathrm{new}}(\Gamma_0(870))6^{\oplus 6}\oplusS2new(Γ0(1160))S_{2}^{\mathrm{new}}(\Gamma_0(1160))4^{\oplus 4}\oplusS2new(Γ0(1450))S_{2}^{\mathrm{new}}(\Gamma_0(1450))6^{\oplus 6}\oplusS2new(Γ0(1740))S_{2}^{\mathrm{new}}(\Gamma_0(1740))4^{\oplus 4}\oplusS2new(Γ0(2175))S_{2}^{\mathrm{new}}(\Gamma_0(2175))4^{\oplus 4}\oplusS2new(Γ0(2900))S_{2}^{\mathrm{new}}(\Gamma_0(2900))4^{\oplus 4}\oplusS2new(Γ0(3480))S_{2}^{\mathrm{new}}(\Gamma_0(3480))2^{\oplus 2}\oplusS2new(Γ0(4350))S_{2}^{\mathrm{new}}(\Gamma_0(4350))3^{\oplus 3}\oplusS2new(Γ0(5800))S_{2}^{\mathrm{new}}(\Gamma_0(5800))2^{\oplus 2}\oplusS2new(Γ0(8700))S_{2}^{\mathrm{new}}(\Gamma_0(8700))2^{\oplus 2}