Properties

Label 30.2.a
Level 30
Weight 2
Character orbit a
Rep. character \(\chi_{30}(1,\cdot)\)
Character field \(\Q\)
Dimension 1
Newforms 1
Sturm bound 12
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 30 = 2 \cdot 3 \cdot 5 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 30.a (trivial)
Character field: \(\Q\)
Newforms: \( 1 \)
Sturm bound: \(12\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(30))\).

Total New Old
Modular forms 10 1 9
Cusp forms 3 1 2
Eisenstein series 7 0 7

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(5\)FrickeDim.
\(+\)\(-\)\(+\)\(-\)\(1\)
Plus space\(+\)\(0\)
Minus space\(-\)\(1\)

Trace form

\( q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - 4q^{7} - q^{8} + q^{9} + O(q^{10}) \) \( q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - 4q^{7} - q^{8} + q^{9} + q^{10} + q^{12} + 2q^{13} + 4q^{14} - q^{15} + q^{16} + 6q^{17} - q^{18} - 4q^{19} - q^{20} - 4q^{21} - q^{24} + q^{25} - 2q^{26} + q^{27} - 4q^{28} - 6q^{29} + q^{30} + 8q^{31} - q^{32} - 6q^{34} + 4q^{35} + q^{36} + 2q^{37} + 4q^{38} + 2q^{39} + q^{40} - 6q^{41} + 4q^{42} - 4q^{43} - q^{45} + q^{48} + 9q^{49} - q^{50} + 6q^{51} + 2q^{52} - 6q^{53} - q^{54} + 4q^{56} - 4q^{57} + 6q^{58} - q^{60} - 10q^{61} - 8q^{62} - 4q^{63} + q^{64} - 2q^{65} - 4q^{67} + 6q^{68} - 4q^{70} - q^{72} + 2q^{73} - 2q^{74} + q^{75} - 4q^{76} - 2q^{78} + 8q^{79} - q^{80} + q^{81} + 6q^{82} + 12q^{83} - 4q^{84} - 6q^{85} + 4q^{86} - 6q^{87} + 18q^{89} + q^{90} - 8q^{91} + 8q^{93} + 4q^{95} - q^{96} + 2q^{97} - 9q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(30))\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces A-L signs $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\) 2 3 5
30.2.a.a \(1\) \(0.240\) \(\Q\) None \(-1\) \(1\) \(-1\) \(-4\) \(+\) \(-\) \(+\) \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}-4q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(30))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(30)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 2}\)