Properties

Label 150.2.a
Level $150$
Weight $2$
Character orbit 150.a
Rep. character $\chi_{150}(1,\cdot)$
Character field $\Q$
Dimension $3$
Newform subspaces $3$
Sturm bound $60$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 150.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(60\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(150))\).

Total New Old
Modular forms 42 3 39
Cusp forms 19 3 16
Eisenstein series 23 0 23

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(5\)FrickeDim
\(+\)\(+\)\(-\)\(-\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(1\)
Plus space\(+\)\(0\)
Minus space\(-\)\(3\)

Trace form

\( 3 q + q^{2} - q^{3} + 3 q^{4} + q^{6} + 4 q^{7} + q^{8} + 3 q^{9} + 4 q^{11} - q^{12} - 2 q^{13} + 3 q^{16} - 6 q^{17} + q^{18} - 4 q^{19} - 8 q^{21} + q^{24} - 14 q^{26} - q^{27} + 4 q^{28} - 6 q^{29}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(150))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 5
150.2.a.a 150.a 1.a $1$ $1.198$ \(\Q\) None 30.2.c.a \(-1\) \(-1\) \(0\) \(2\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+q^{6}+2q^{7}-q^{8}+\cdots\)
150.2.a.b 150.a 1.a $1$ $1.198$ \(\Q\) None 30.2.a.a \(1\) \(-1\) \(0\) \(4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-q^{6}+4q^{7}+q^{8}+\cdots\)
150.2.a.c 150.a 1.a $1$ $1.198$ \(\Q\) None 30.2.c.a \(1\) \(1\) \(0\) \(-2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+q^{6}-2q^{7}+q^{8}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(150))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(150)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 2}\)