Defining parameters
Level: | \( N \) | \(=\) | \( 580 = 2^{2} \cdot 5 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 580.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(180\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(580))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 96 | 8 | 88 |
Cusp forms | 85 | 8 | 77 |
Eisenstein series | 11 | 0 | 11 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | \(29\) | Fricke | Dim |
---|---|---|---|---|
\(-\) | \(+\) | \(+\) | \(-\) | \(3\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(1\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(1\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(3\) |
Plus space | \(+\) | \(2\) | ||
Minus space | \(-\) | \(6\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(580))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 5 | 29 | |||||||
580.2.a.a | $1$ | $4.631$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(0\) | $-$ | $+$ | $-$ | \(q-q^{5}-3q^{9}-2q^{11}-2q^{13}-2q^{19}+\cdots\) | |
580.2.a.b | $1$ | $4.631$ | \(\Q\) | None | \(0\) | \(0\) | \(1\) | \(-2\) | $-$ | $-$ | $+$ | \(q+q^{5}-2q^{7}-3q^{9}-4q^{11}-6q^{13}+\cdots\) | |
580.2.a.c | $3$ | $4.631$ | 3.3.564.1 | None | \(0\) | \(2\) | \(-3\) | \(-4\) | $-$ | $+$ | $+$ | \(q+(1+\beta _{2})q^{3}-q^{5}+(-1+\beta _{2})q^{7}+\cdots\) | |
580.2.a.d | $3$ | $4.631$ | 3.3.148.1 | None | \(0\) | \(2\) | \(3\) | \(2\) | $-$ | $-$ | $-$ | \(q+(1-\beta _{1})q^{3}+q^{5}+(1-\beta _{2})q^{7}+(1+\cdots)q^{9}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(580))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(580)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(29))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(58))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(116))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(145))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(290))\)\(^{\oplus 2}\)