Defining parameters
Level: | \( N \) | \(=\) | \( 100 = 2^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 100.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(30\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(100))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 24 | 1 | 23 |
Cusp forms | 7 | 1 | 6 |
Eisenstein series | 17 | 0 | 17 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | Fricke | Dim |
---|---|---|---|
\(-\) | \(+\) | \(-\) | \(1\) |
Plus space | \(+\) | \(0\) | |
Minus space | \(-\) | \(1\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(100))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 5 | |||||||
100.2.a.a | $1$ | $0.799$ | \(\Q\) | None | \(0\) | \(2\) | \(0\) | \(-2\) | $-$ | $+$ | \(q+2q^{3}-2q^{7}+q^{9}-2q^{13}+6q^{17}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(100))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(100)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 2}\)