Defining parameters
Level: | \( N \) | \(=\) | \( 435 = 3 \cdot 5 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 435.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 10 \) | ||
Sturm bound: | \(120\) | ||
Trace bound: | \(4\) | ||
Distinguishing \(T_p\): | \(2\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(435))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 64 | 19 | 45 |
Cusp forms | 57 | 19 | 38 |
Eisenstein series | 7 | 0 | 7 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(5\) | \(29\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(5\) | \(4\) | \(1\) | \(5\) | \(4\) | \(1\) | \(0\) | \(0\) | \(0\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(10\) | \(1\) | \(9\) | \(9\) | \(1\) | \(8\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(8\) | \(3\) | \(5\) | \(7\) | \(3\) | \(4\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(9\) | \(0\) | \(9\) | \(8\) | \(0\) | \(8\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(7\) | \(3\) | \(4\) | \(6\) | \(3\) | \(3\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(8\) | \(2\) | \(6\) | \(7\) | \(2\) | \(5\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(6\) | \(0\) | \(6\) | \(5\) | \(0\) | \(5\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(11\) | \(6\) | \(5\) | \(10\) | \(6\) | \(4\) | \(1\) | \(0\) | \(1\) | |||
Plus space | \(+\) | \(28\) | \(6\) | \(22\) | \(25\) | \(6\) | \(19\) | \(3\) | \(0\) | \(3\) | |||||
Minus space | \(-\) | \(36\) | \(13\) | \(23\) | \(32\) | \(13\) | \(19\) | \(4\) | \(0\) | \(4\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(435))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(435))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(435)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(29))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(87))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(145))\)\(^{\oplus 2}\)