Properties

Label 58.2.a
Level $58$
Weight $2$
Character orbit 58.a
Rep. character $\chi_{58}(1,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $2$
Sturm bound $15$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 58 = 2 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 58.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(15\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(58))\).

Total New Old
Modular forms 9 2 7
Cusp forms 6 2 4
Eisenstein series 3 0 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(29\)FrickeDim
\(+\)\(+\)\(+\)\(1\)
\(-\)\(+\)\(-\)\(1\)
Plus space\(+\)\(1\)
Minus space\(-\)\(1\)

Trace form

\( 2 q - 4 q^{3} + 2 q^{4} - 2 q^{5} + 2 q^{6} - 4 q^{7} + 4 q^{9} + 4 q^{10} - 4 q^{11} - 4 q^{12} + 2 q^{13} + 8 q^{15} + 2 q^{16} + 4 q^{17} - 8 q^{18} - 8 q^{19} - 2 q^{20} + 8 q^{21} - 2 q^{22} + 4 q^{23}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(58))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 29
58.2.a.a 58.a 1.a $1$ $0.463$ \(\Q\) None 58.2.a.a \(-1\) \(-3\) \(-3\) \(-2\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-3q^{3}+q^{4}-3q^{5}+3q^{6}-2q^{7}+\cdots\)
58.2.a.b 58.a 1.a $1$ $0.463$ \(\Q\) None 58.2.a.b \(1\) \(-1\) \(1\) \(-2\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}-2q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(58))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(58)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(29))\)\(^{\oplus 2}\)