Defining parameters
Level: | \( N \) | \(=\) | \( 75 = 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 75.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(20\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(75))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 16 | 3 | 13 |
Cusp forms | 5 | 3 | 2 |
Eisenstein series | 11 | 0 | 11 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(5\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(-\) | \(-\) | \(1\) |
\(-\) | \(+\) | \(-\) | \(2\) |
Plus space | \(+\) | \(0\) | |
Minus space | \(-\) | \(3\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(75))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | 5 | |||||||
75.2.a.a | $1$ | $0.599$ | \(\Q\) | None | \(-2\) | \(1\) | \(0\) | \(3\) | $-$ | $+$ | \(q-2q^{2}+q^{3}+2q^{4}-2q^{6}+3q^{7}+\cdots\) | |
75.2.a.b | $1$ | $0.599$ | \(\Q\) | None | \(1\) | \(1\) | \(0\) | \(0\) | $-$ | $+$ | \(q+q^{2}+q^{3}-q^{4}+q^{6}-3q^{8}+q^{9}+\cdots\) | |
75.2.a.c | $1$ | $0.599$ | \(\Q\) | None | \(2\) | \(-1\) | \(0\) | \(-3\) | $+$ | $-$ | \(q+2q^{2}-q^{3}+2q^{4}-2q^{6}-3q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(75))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(75)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 2}\)