Defining parameters
Level: | \( N \) | \(=\) | \( 87 = 3 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 87.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(20\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(87))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 12 | 5 | 7 |
Cusp forms | 9 | 5 | 4 |
Eisenstein series | 3 | 0 | 3 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(29\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(-\) | \(-\) | \(3\) |
\(-\) | \(+\) | \(-\) | \(2\) |
Plus space | \(+\) | \(0\) | |
Minus space | \(-\) | \(5\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(87))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | 29 | |||||||
87.2.a.a | $2$ | $0.695$ | \(\Q(\sqrt{5}) \) | None | \(1\) | \(2\) | \(2\) | \(-4\) | $-$ | $+$ | \(q+\beta q^{2}+q^{3}+(-1+\beta )q^{4}+(2-2\beta )q^{5}+\cdots\) | |
87.2.a.b | $3$ | $0.695$ | 3.3.229.1 | None | \(2\) | \(-3\) | \(0\) | \(4\) | $+$ | $-$ | \(q+(1+\beta _{2})q^{2}-q^{3}+(2+\beta _{1})q^{4}-2\beta _{1}q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(87))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(87)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(29))\)\(^{\oplus 2}\)