Newspace parameters
Level: | \( N \) | \(=\) | \( 1740 = 2^{2} \cdot 3 \cdot 5 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1740.bc (of order \(4\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(13.8939699517\) |
Analytic rank: | \(0\) |
Dimension: | \(30\) |
Relative dimension: | \(15\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
853.1 | 0 | 1.00000i | 0 | −2.22455 | + | 0.226663i | 0 | 2.93449 | − | 2.93449i | 0 | −1.00000 | 0 | ||||||||||||||
853.2 | 0 | 1.00000i | 0 | −2.01691 | + | 0.965450i | 0 | −2.62508 | + | 2.62508i | 0 | −1.00000 | 0 | ||||||||||||||
853.3 | 0 | 1.00000i | 0 | −1.98303 | + | 1.03325i | 0 | 0.377598 | − | 0.377598i | 0 | −1.00000 | 0 | ||||||||||||||
853.4 | 0 | 1.00000i | 0 | −1.70944 | − | 1.44147i | 0 | −0.746381 | + | 0.746381i | 0 | −1.00000 | 0 | ||||||||||||||
853.5 | 0 | 1.00000i | 0 | −1.37520 | − | 1.76319i | 0 | 0.501610 | − | 0.501610i | 0 | −1.00000 | 0 | ||||||||||||||
853.6 | 0 | 1.00000i | 0 | −0.833642 | + | 2.07486i | 0 | 0.321435 | − | 0.321435i | 0 | −1.00000 | 0 | ||||||||||||||
853.7 | 0 | 1.00000i | 0 | 0.0712321 | − | 2.23493i | 0 | −0.799559 | + | 0.799559i | 0 | −1.00000 | 0 | ||||||||||||||
853.8 | 0 | 1.00000i | 0 | 0.118428 | + | 2.23293i | 0 | 3.19123 | − | 3.19123i | 0 | −1.00000 | 0 | ||||||||||||||
853.9 | 0 | 1.00000i | 0 | 0.304001 | + | 2.21531i | 0 | −0.0397037 | + | 0.0397037i | 0 | −1.00000 | 0 | ||||||||||||||
853.10 | 0 | 1.00000i | 0 | 0.734667 | + | 2.11193i | 0 | −3.54291 | + | 3.54291i | 0 | −1.00000 | 0 | ||||||||||||||
853.11 | 0 | 1.00000i | 0 | 0.964742 | − | 2.01724i | 0 | 2.38076 | − | 2.38076i | 0 | −1.00000 | 0 | ||||||||||||||
853.12 | 0 | 1.00000i | 0 | 1.73866 | + | 1.40608i | 0 | −0.403526 | + | 0.403526i | 0 | −1.00000 | 0 | ||||||||||||||
853.13 | 0 | 1.00000i | 0 | 1.84878 | − | 1.25778i | 0 | −2.83016 | + | 2.83016i | 0 | −1.00000 | 0 | ||||||||||||||
853.14 | 0 | 1.00000i | 0 | 2.12991 | − | 0.680807i | 0 | 2.56441 | − | 2.56441i | 0 | −1.00000 | 0 | ||||||||||||||
853.15 | 0 | 1.00000i | 0 | 2.23235 | + | 0.128942i | 0 | −1.28422 | + | 1.28422i | 0 | −1.00000 | 0 | ||||||||||||||
1177.1 | 0 | − | 1.00000i | 0 | −2.22455 | − | 0.226663i | 0 | 2.93449 | + | 2.93449i | 0 | −1.00000 | 0 | |||||||||||||
1177.2 | 0 | − | 1.00000i | 0 | −2.01691 | − | 0.965450i | 0 | −2.62508 | − | 2.62508i | 0 | −1.00000 | 0 | |||||||||||||
1177.3 | 0 | − | 1.00000i | 0 | −1.98303 | − | 1.03325i | 0 | 0.377598 | + | 0.377598i | 0 | −1.00000 | 0 | |||||||||||||
1177.4 | 0 | − | 1.00000i | 0 | −1.70944 | + | 1.44147i | 0 | −0.746381 | − | 0.746381i | 0 | −1.00000 | 0 | |||||||||||||
1177.5 | 0 | − | 1.00000i | 0 | −1.37520 | + | 1.76319i | 0 | 0.501610 | + | 0.501610i | 0 | −1.00000 | 0 | |||||||||||||
See all 30 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
145.j | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1740.2.bc.c | yes | 30 |
5.c | odd | 4 | 1 | 1740.2.bb.c | ✓ | 30 | |
29.c | odd | 4 | 1 | 1740.2.bb.c | ✓ | 30 | |
145.j | even | 4 | 1 | inner | 1740.2.bc.c | yes | 30 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1740.2.bb.c | ✓ | 30 | 5.c | odd | 4 | 1 | |
1740.2.bb.c | ✓ | 30 | 29.c | odd | 4 | 1 | |
1740.2.bc.c | yes | 30 | 1.a | even | 1 | 1 | trivial |
1740.2.bc.c | yes | 30 | 145.j | even | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7}^{30} + 1052 T_{7}^{26} - 212 T_{7}^{25} + 6672 T_{7}^{23} + 351910 T_{7}^{22} - 53020 T_{7}^{21} + \cdots + 41472 \)
acting on \(S_{2}^{\mathrm{new}}(1740, [\chi])\).