L(s) = 1 | − i·3-s + (−1.70 + 1.44i)5-s + (−0.746 − 0.746i)7-s − 9-s + (−1.32 + 1.32i)11-s + (1.13 + 1.13i)13-s + (1.44 + 1.70i)15-s + 0.116·17-s + (−1.77 − 1.77i)19-s + (−0.746 + 0.746i)21-s + (3.17 − 3.17i)23-s + (0.844 − 4.92i)25-s + i·27-s + (5.15 + 1.56i)29-s + (0.474 − 0.474i)31-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + (−0.764 + 0.644i)5-s + (−0.282 − 0.282i)7-s − 0.333·9-s + (−0.398 + 0.398i)11-s + (0.314 + 0.314i)13-s + (0.372 + 0.441i)15-s + 0.0281·17-s + (−0.406 − 0.406i)19-s + (−0.162 + 0.162i)21-s + (0.661 − 0.661i)23-s + (0.168 − 0.985i)25-s + 0.192i·27-s + (0.956 + 0.290i)29-s + (0.0852 − 0.0852i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.695 + 0.718i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1740 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.695 + 0.718i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.230524984\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.230524984\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + iT \) |
| 5 | \( 1 + (1.70 - 1.44i)T \) |
| 29 | \( 1 + (-5.15 - 1.56i)T \) |
good | 7 | \( 1 + (0.746 + 0.746i)T + 7iT^{2} \) |
| 11 | \( 1 + (1.32 - 1.32i)T - 11iT^{2} \) |
| 13 | \( 1 + (-1.13 - 1.13i)T + 13iT^{2} \) |
| 17 | \( 1 - 0.116T + 17T^{2} \) |
| 19 | \( 1 + (1.77 + 1.77i)T + 19iT^{2} \) |
| 23 | \( 1 + (-3.17 + 3.17i)T - 23iT^{2} \) |
| 31 | \( 1 + (-0.474 + 0.474i)T - 31iT^{2} \) |
| 37 | \( 1 + 3.66iT - 37T^{2} \) |
| 41 | \( 1 + (-9.00 - 9.00i)T + 41iT^{2} \) |
| 43 | \( 1 + 1.16iT - 43T^{2} \) |
| 47 | \( 1 - 0.280iT - 47T^{2} \) |
| 53 | \( 1 + (-3.72 + 3.72i)T - 53iT^{2} \) |
| 59 | \( 1 + 3.01iT - 59T^{2} \) |
| 61 | \( 1 + (-0.759 + 0.759i)T - 61iT^{2} \) |
| 67 | \( 1 + (-8.81 + 8.81i)T - 67iT^{2} \) |
| 71 | \( 1 + 12.5iT - 71T^{2} \) |
| 73 | \( 1 - 10.0T + 73T^{2} \) |
| 79 | \( 1 + (0.399 + 0.399i)T + 79iT^{2} \) |
| 83 | \( 1 + (4.85 - 4.85i)T - 83iT^{2} \) |
| 89 | \( 1 + (-6.10 - 6.10i)T + 89iT^{2} \) |
| 97 | \( 1 + 3.53iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.111224478976786205028276959333, −8.234810108784718463343327920322, −7.61942537093169110969694297527, −6.74436791094891939375411158602, −6.40316394844072292503223748056, −5.04641691101308578500279157628, −4.15038207213636751545028957994, −3.14123764110734236483290638252, −2.25357673139032796901909564848, −0.63124038248216795944438207979,
0.911817373995546591567019969943, 2.65607813052561634944779510358, 3.60763153142413635200664429419, 4.38716206924883471092050587230, 5.31637066253986291050518056225, 5.98230698645721555684263097700, 7.14774707141088945815036854833, 8.040211729453307552480174894487, 8.635032155642922128314261978236, 9.292115199073971096801960620782