Properties

Label 1740.2.bc
Level $1740$
Weight $2$
Character orbit 1740.bc
Rep. character $\chi_{1740}(853,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $60$
Newform subspaces $3$
Sturm bound $720$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1740 = 2^{2} \cdot 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1740.bc (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 145 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 3 \)
Sturm bound: \(720\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1740, [\chi])\).

Total New Old
Modular forms 744 60 684
Cusp forms 696 60 636
Eisenstein series 48 0 48

Trace form

\( 60 q - 60 q^{9} - 4 q^{13} - 8 q^{15} + 4 q^{25} - 8 q^{33} - 32 q^{35} - 8 q^{39} - 28 q^{41} + 36 q^{53} + 8 q^{55} + 16 q^{57} + 20 q^{61} + 20 q^{65} + 16 q^{67} + 16 q^{73} + 24 q^{77} - 8 q^{79} + 60 q^{81}+ \cdots + 56 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1740, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1740.2.bc.a 1740.bc 145.j $2$ $13.894$ \(\Q(\sqrt{-1}) \) None 1740.2.bb.a \(0\) \(0\) \(-4\) \(4\) $\mathrm{SU}(2)[C_{4}]$ \(q-i q^{3}+(-i-2)q^{5}+(-2 i+2)q^{7}+\cdots\)
1740.2.bc.b 1740.bc 145.j $28$ $13.894$ None 1740.2.bb.b \(0\) \(0\) \(4\) \(-4\) $\mathrm{SU}(2)[C_{4}]$
1740.2.bc.c 1740.bc 145.j $30$ $13.894$ None 1740.2.bb.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1740, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1740, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(145, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(290, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(435, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(580, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(870, [\chi])\)\(^{\oplus 2}\)