Defining parameters
Level: | \( N \) | \(=\) | \( 1740 = 2^{2} \cdot 3 \cdot 5 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1740.bc (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 145 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(720\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1740, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 744 | 60 | 684 |
Cusp forms | 696 | 60 | 636 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1740, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1740.2.bc.a | $2$ | $13.894$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(-4\) | \(4\) | \(q-i q^{3}+(-i-2)q^{5}+(-2 i+2)q^{7}+\cdots\) |
1740.2.bc.b | $28$ | $13.894$ | None | \(0\) | \(0\) | \(4\) | \(-4\) | ||
1740.2.bc.c | $30$ | $13.894$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1740, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1740, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(145, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(290, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(435, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(580, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(870, [\chi])\)\(^{\oplus 2}\)