Properties

Label 1740.2
Level 1740
Weight 2
Dimension 31936
Nonzero newspaces 40
Sturm bound 322560
Trace bound 13

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1740 = 2^{2} \cdot 3 \cdot 5 \cdot 29 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 40 \)
Sturm bound: \(322560\)
Trace bound: \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1740))\).

Total New Old
Modular forms 82880 32592 50288
Cusp forms 78401 31936 46465
Eisenstein series 4479 656 3823

Trace form

\( 31936 q - 4 q^{3} - 40 q^{4} - 4 q^{5} - 68 q^{6} + 8 q^{7} + 24 q^{8} - 36 q^{9} - 44 q^{10} + 16 q^{11} - 20 q^{12} - 64 q^{13} + 28 q^{15} - 168 q^{16} + 40 q^{17} - 60 q^{18} - 40 q^{20} - 200 q^{21}+ \cdots + 236 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1740))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1740.2.a \(\chi_{1740}(1, \cdot)\) 1740.2.a.a 1 1
1740.2.a.b 1
1740.2.a.c 1
1740.2.a.d 1
1740.2.a.e 1
1740.2.a.f 1
1740.2.a.g 1
1740.2.a.h 1
1740.2.a.i 2
1740.2.a.j 2
1740.2.a.k 2
1740.2.a.l 2
1740.2.a.m 2
1740.2.a.n 2
1740.2.b \(\chi_{1740}(289, \cdot)\) 1740.2.b.a 14 1
1740.2.b.b 14
1740.2.e \(\chi_{1740}(1391, \cdot)\) n/a 240 1
1740.2.g \(\chi_{1740}(349, \cdot)\) 1740.2.g.a 2 1
1740.2.g.b 2
1740.2.g.c 12
1740.2.g.d 12
1740.2.h \(\chi_{1740}(1451, \cdot)\) n/a 224 1
1740.2.k \(\chi_{1740}(1739, \cdot)\) n/a 352 1
1740.2.l \(\chi_{1740}(1681, \cdot)\) 1740.2.l.a 2 1
1740.2.l.b 2
1740.2.l.c 6
1740.2.l.d 10
1740.2.n \(\chi_{1740}(59, \cdot)\) n/a 336 1
1740.2.q \(\chi_{1740}(331, \cdot)\) n/a 240 2
1740.2.t \(\chi_{1740}(389, \cdot)\) n/a 120 2
1740.2.u \(\chi_{1740}(233, \cdot)\) n/a 112 2
1740.2.x \(\chi_{1740}(523, \cdot)\) n/a 336 2
1740.2.z \(\chi_{1740}(563, \cdot)\) n/a 704 2
1740.2.bb \(\chi_{1740}(133, \cdot)\) 1740.2.bb.a 2 2
1740.2.bb.b 28
1740.2.bb.c 30
1740.2.bc \(\chi_{1740}(853, \cdot)\) 1740.2.bc.a 2 2
1740.2.bc.b 28
1740.2.bc.c 30
1740.2.be \(\chi_{1740}(1583, \cdot)\) n/a 704 2
1740.2.bg \(\chi_{1740}(463, \cdot)\) n/a 360 2
1740.2.bj \(\chi_{1740}(173, \cdot)\) n/a 120 2
1740.2.bk \(\chi_{1740}(41, \cdot)\) 1740.2.bk.a 4 2
1740.2.bk.b 4
1740.2.bk.c 36
1740.2.bk.d 36
1740.2.bn \(\chi_{1740}(679, \cdot)\) n/a 360 2
1740.2.bo \(\chi_{1740}(181, \cdot)\) n/a 120 6
1740.2.br \(\chi_{1740}(239, \cdot)\) n/a 2112 6
1740.2.bt \(\chi_{1740}(121, \cdot)\) n/a 120 6
1740.2.bu \(\chi_{1740}(179, \cdot)\) n/a 2112 6
1740.2.bx \(\chi_{1740}(371, \cdot)\) n/a 1440 6
1740.2.by \(\chi_{1740}(49, \cdot)\) n/a 192 6
1740.2.ca \(\chi_{1740}(71, \cdot)\) n/a 1440 6
1740.2.cd \(\chi_{1740}(109, \cdot)\) n/a 168 6
1740.2.ce \(\chi_{1740}(19, \cdot)\) n/a 2160 12
1740.2.ch \(\chi_{1740}(101, \cdot)\) n/a 480 12
1740.2.cj \(\chi_{1740}(353, \cdot)\) n/a 720 12
1740.2.ck \(\chi_{1740}(67, \cdot)\) n/a 2160 12
1740.2.cm \(\chi_{1740}(37, \cdot)\) n/a 360 12
1740.2.co \(\chi_{1740}(143, \cdot)\) n/a 4224 12
1740.2.cr \(\chi_{1740}(47, \cdot)\) n/a 4224 12
1740.2.ct \(\chi_{1740}(73, \cdot)\) n/a 360 12
1740.2.cv \(\chi_{1740}(7, \cdot)\) n/a 2160 12
1740.2.cw \(\chi_{1740}(53, \cdot)\) n/a 720 12
1740.2.cy \(\chi_{1740}(89, \cdot)\) n/a 720 12
1740.2.db \(\chi_{1740}(31, \cdot)\) n/a 1440 12

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1740))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(1740)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(29))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(58))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(60))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(87))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(116))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(145))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(174))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(290))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(348))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(435))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(580))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(870))\)\(^{\oplus 2}\)