L(s) = 1 | + i·3-s + (1.73 + 1.40i)5-s + (−0.403 + 0.403i)7-s − 9-s + (−1.63 − 1.63i)11-s + (1.65 − 1.65i)13-s + (−1.40 + 1.73i)15-s + 1.73·17-s + (−0.837 + 0.837i)19-s + (−0.403 − 0.403i)21-s + (5.89 + 5.89i)23-s + (1.04 + 4.88i)25-s − i·27-s + (−2.32 + 4.85i)29-s + (5.79 + 5.79i)31-s + ⋯ |
L(s) = 1 | + 0.577i·3-s + (0.777 + 0.628i)5-s + (−0.152 + 0.152i)7-s − 0.333·9-s + (−0.494 − 0.494i)11-s + (0.460 − 0.460i)13-s + (−0.363 + 0.448i)15-s + 0.421·17-s + (−0.192 + 0.192i)19-s + (−0.0880 − 0.0880i)21-s + (1.22 + 1.22i)23-s + (0.209 + 0.977i)25-s − 0.192i·27-s + (−0.431 + 0.902i)29-s + (1.04 + 1.04i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0814 - 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1740 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0814 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.824817425\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.824817425\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - iT \) |
| 5 | \( 1 + (-1.73 - 1.40i)T \) |
| 29 | \( 1 + (2.32 - 4.85i)T \) |
good | 7 | \( 1 + (0.403 - 0.403i)T - 7iT^{2} \) |
| 11 | \( 1 + (1.63 + 1.63i)T + 11iT^{2} \) |
| 13 | \( 1 + (-1.65 + 1.65i)T - 13iT^{2} \) |
| 17 | \( 1 - 1.73T + 17T^{2} \) |
| 19 | \( 1 + (0.837 - 0.837i)T - 19iT^{2} \) |
| 23 | \( 1 + (-5.89 - 5.89i)T + 23iT^{2} \) |
| 31 | \( 1 + (-5.79 - 5.79i)T + 31iT^{2} \) |
| 37 | \( 1 + 8.68iT - 37T^{2} \) |
| 41 | \( 1 + (-1.82 + 1.82i)T - 41iT^{2} \) |
| 43 | \( 1 - 10.5iT - 43T^{2} \) |
| 47 | \( 1 - 10.9iT - 47T^{2} \) |
| 53 | \( 1 + (2.48 + 2.48i)T + 53iT^{2} \) |
| 59 | \( 1 + 3.22iT - 59T^{2} \) |
| 61 | \( 1 + (4.86 + 4.86i)T + 61iT^{2} \) |
| 67 | \( 1 + (4.86 + 4.86i)T + 67iT^{2} \) |
| 71 | \( 1 - 4.15iT - 71T^{2} \) |
| 73 | \( 1 + 7.08T + 73T^{2} \) |
| 79 | \( 1 + (7.63 - 7.63i)T - 79iT^{2} \) |
| 83 | \( 1 + (5.19 + 5.19i)T + 83iT^{2} \) |
| 89 | \( 1 + (-0.214 + 0.214i)T - 89iT^{2} \) |
| 97 | \( 1 + 16.9iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.486603404700671643355170201146, −8.975448418686144107692563674144, −7.954005121929019298452638075584, −7.13606620747649710563564489807, −6.06485522326948867853611433990, −5.61086912252962367396923511428, −4.69028049668917381104695750350, −3.27675532726047909902717544554, −2.94419331960972607744833968004, −1.39902363684049590624318086796,
0.72425348202044532881110409149, 1.93087836086581118309534084430, 2.81843799136897991039993522820, 4.25042016020027829422683883582, 5.04936651517785641287184527366, 5.97424855720617308153727426589, 6.64813435632539082884794096372, 7.48090797508362998763988600882, 8.470289872605415570936818607922, 8.927255054550598600011052276647