L(s) = 1 | − i·3-s + (2.12 + 0.680i)5-s + (2.56 + 2.56i)7-s − 9-s + (−2.95 + 2.95i)11-s + (−2.96 − 2.96i)13-s + (0.680 − 2.12i)15-s + 1.42·17-s + (4.21 + 4.21i)19-s + (2.56 − 2.56i)21-s + (−0.626 + 0.626i)23-s + (4.07 + 2.90i)25-s + i·27-s + (3.40 + 4.17i)29-s + (1.57 − 1.57i)31-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + (0.952 + 0.304i)5-s + (0.969 + 0.969i)7-s − 0.333·9-s + (−0.890 + 0.890i)11-s + (−0.822 − 0.822i)13-s + (0.175 − 0.549i)15-s + 0.346·17-s + (0.967 + 0.967i)19-s + (0.559 − 0.559i)21-s + (−0.130 + 0.130i)23-s + (0.814 + 0.580i)25-s + 0.192i·27-s + (0.631 + 0.775i)29-s + (0.282 − 0.282i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.740 - 0.672i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1740 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.740 - 0.672i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.071965095\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.071965095\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + iT \) |
| 5 | \( 1 + (-2.12 - 0.680i)T \) |
| 29 | \( 1 + (-3.40 - 4.17i)T \) |
good | 7 | \( 1 + (-2.56 - 2.56i)T + 7iT^{2} \) |
| 11 | \( 1 + (2.95 - 2.95i)T - 11iT^{2} \) |
| 13 | \( 1 + (2.96 + 2.96i)T + 13iT^{2} \) |
| 17 | \( 1 - 1.42T + 17T^{2} \) |
| 19 | \( 1 + (-4.21 - 4.21i)T + 19iT^{2} \) |
| 23 | \( 1 + (0.626 - 0.626i)T - 23iT^{2} \) |
| 31 | \( 1 + (-1.57 + 1.57i)T - 31iT^{2} \) |
| 37 | \( 1 - 3.65iT - 37T^{2} \) |
| 41 | \( 1 + (2.55 + 2.55i)T + 41iT^{2} \) |
| 43 | \( 1 + 6.27iT - 43T^{2} \) |
| 47 | \( 1 - 10.1iT - 47T^{2} \) |
| 53 | \( 1 + (-0.0167 + 0.0167i)T - 53iT^{2} \) |
| 59 | \( 1 - 1.42iT - 59T^{2} \) |
| 61 | \( 1 + (6.01 - 6.01i)T - 61iT^{2} \) |
| 67 | \( 1 + (-4.13 + 4.13i)T - 67iT^{2} \) |
| 71 | \( 1 + 5.04iT - 71T^{2} \) |
| 73 | \( 1 + 5.65T + 73T^{2} \) |
| 79 | \( 1 + (-9.12 - 9.12i)T + 79iT^{2} \) |
| 83 | \( 1 + (5.53 - 5.53i)T - 83iT^{2} \) |
| 89 | \( 1 + (-2.80 - 2.80i)T + 89iT^{2} \) |
| 97 | \( 1 + 1.50iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.497936929616407563029657560200, −8.479351602422674443457660680917, −7.77128370287678399781617364431, −7.19284634185898262429862462263, −6.02233564511117620155174878008, −5.35966815719310010481490037286, −4.88168060885841332262177257264, −3.05481791997683770340842541347, −2.32443595567461305516454851528, −1.45900689516105290653101827426,
0.806212315752611928183011438169, 2.16143858690181223893760968645, 3.21037749763743511674820821227, 4.55904418659389477797114609943, 4.94394622804513272838502792576, 5.80100910089456379355871141640, 6.85480574029121886964445422568, 7.73481962205920033940739340548, 8.476468110386911260478614414779, 9.335693232806894444144952961173