L(s) = 1 | + i·3-s + (−2.22 + 0.226i)5-s + (2.93 − 2.93i)7-s − 9-s + (−0.699 − 0.699i)11-s + (1.95 − 1.95i)13-s + (−0.226 − 2.22i)15-s − 3.39·17-s + (−4.54 + 4.54i)19-s + (2.93 + 2.93i)21-s + (0.532 + 0.532i)23-s + (4.89 − 1.00i)25-s − i·27-s + (−4.81 − 2.41i)29-s + (−5.95 − 5.95i)31-s + ⋯ |
L(s) = 1 | + 0.577i·3-s + (−0.994 + 0.101i)5-s + (1.10 − 1.10i)7-s − 0.333·9-s + (−0.211 − 0.211i)11-s + (0.541 − 0.541i)13-s + (−0.0585 − 0.574i)15-s − 0.823·17-s + (−1.04 + 1.04i)19-s + (0.640 + 0.640i)21-s + (0.110 + 0.110i)23-s + (0.979 − 0.201i)25-s − 0.192i·27-s + (−0.894 − 0.447i)29-s + (−1.06 − 1.06i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.663 + 0.747i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1740 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.663 + 0.747i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.5159909326\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5159909326\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - iT \) |
| 5 | \( 1 + (2.22 - 0.226i)T \) |
| 29 | \( 1 + (4.81 + 2.41i)T \) |
good | 7 | \( 1 + (-2.93 + 2.93i)T - 7iT^{2} \) |
| 11 | \( 1 + (0.699 + 0.699i)T + 11iT^{2} \) |
| 13 | \( 1 + (-1.95 + 1.95i)T - 13iT^{2} \) |
| 17 | \( 1 + 3.39T + 17T^{2} \) |
| 19 | \( 1 + (4.54 - 4.54i)T - 19iT^{2} \) |
| 23 | \( 1 + (-0.532 - 0.532i)T + 23iT^{2} \) |
| 31 | \( 1 + (5.95 + 5.95i)T + 31iT^{2} \) |
| 37 | \( 1 + 5.03iT - 37T^{2} \) |
| 41 | \( 1 + (7.88 - 7.88i)T - 41iT^{2} \) |
| 43 | \( 1 - 8.53iT - 43T^{2} \) |
| 47 | \( 1 + 0.972iT - 47T^{2} \) |
| 53 | \( 1 + (7.28 + 7.28i)T + 53iT^{2} \) |
| 59 | \( 1 - 0.720iT - 59T^{2} \) |
| 61 | \( 1 + (1.46 + 1.46i)T + 61iT^{2} \) |
| 67 | \( 1 + (-9.47 - 9.47i)T + 67iT^{2} \) |
| 71 | \( 1 + 9.49iT - 71T^{2} \) |
| 73 | \( 1 + 7.20T + 73T^{2} \) |
| 79 | \( 1 + (-7.50 + 7.50i)T - 79iT^{2} \) |
| 83 | \( 1 + (11.6 + 11.6i)T + 83iT^{2} \) |
| 89 | \( 1 + (-0.482 + 0.482i)T - 89iT^{2} \) |
| 97 | \( 1 + 11.6iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.869118236956265694927659781607, −8.010450803836423982959056072991, −7.81034006738580653302145866958, −6.71339016675858298680493043944, −5.67488473208709916771827494922, −4.59273568107074480554159761013, −4.09425257025257746430723231535, −3.33110771058708813588083735422, −1.75479759633027197644322431818, −0.18930267590757807427784947079,
1.61517341370511026612619624080, 2.48109706707237339957766997194, 3.77284679246062099933617206495, 4.78281683416048597502023084518, 5.39724966689820143787457448209, 6.64398307654113388918319454559, 7.17621639166830195993933067948, 8.201903619072628484296400122145, 8.698685246719301660954447353452, 9.123744165789317457974836965180