L(s) = 1 | − i·3-s + (−2.01 − 0.965i)5-s + (−2.62 − 2.62i)7-s − 9-s + (2.92 − 2.92i)11-s + (−0.913 − 0.913i)13-s + (−0.965 + 2.01i)15-s − 7.51·17-s + (0.797 + 0.797i)19-s + (−2.62 + 2.62i)21-s + (2.25 − 2.25i)23-s + (3.13 + 3.89i)25-s + i·27-s + (−4.75 + 2.53i)29-s + (2.09 − 2.09i)31-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + (−0.901 − 0.431i)5-s + (−0.992 − 0.992i)7-s − 0.333·9-s + (0.883 − 0.883i)11-s + (−0.253 − 0.253i)13-s + (−0.249 + 0.520i)15-s − 1.82·17-s + (0.182 + 0.182i)19-s + (−0.572 + 0.572i)21-s + (0.470 − 0.470i)23-s + (0.627 + 0.778i)25-s + 0.192i·27-s + (−0.882 + 0.469i)29-s + (0.375 − 0.375i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.395 - 0.918i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1740 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.395 - 0.918i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.2215086394\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2215086394\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + iT \) |
| 5 | \( 1 + (2.01 + 0.965i)T \) |
| 29 | \( 1 + (4.75 - 2.53i)T \) |
good | 7 | \( 1 + (2.62 + 2.62i)T + 7iT^{2} \) |
| 11 | \( 1 + (-2.92 + 2.92i)T - 11iT^{2} \) |
| 13 | \( 1 + (0.913 + 0.913i)T + 13iT^{2} \) |
| 17 | \( 1 + 7.51T + 17T^{2} \) |
| 19 | \( 1 + (-0.797 - 0.797i)T + 19iT^{2} \) |
| 23 | \( 1 + (-2.25 + 2.25i)T - 23iT^{2} \) |
| 31 | \( 1 + (-2.09 + 2.09i)T - 31iT^{2} \) |
| 37 | \( 1 + 0.0487iT - 37T^{2} \) |
| 41 | \( 1 + (-3.75 - 3.75i)T + 41iT^{2} \) |
| 43 | \( 1 - 0.0330iT - 43T^{2} \) |
| 47 | \( 1 + 2.62iT - 47T^{2} \) |
| 53 | \( 1 + (-6.50 + 6.50i)T - 53iT^{2} \) |
| 59 | \( 1 - 10.9iT - 59T^{2} \) |
| 61 | \( 1 + (-0.249 + 0.249i)T - 61iT^{2} \) |
| 67 | \( 1 + (9.90 - 9.90i)T - 67iT^{2} \) |
| 71 | \( 1 + 0.838iT - 71T^{2} \) |
| 73 | \( 1 - 3.36T + 73T^{2} \) |
| 79 | \( 1 + (-5.06 - 5.06i)T + 79iT^{2} \) |
| 83 | \( 1 + (10.1 - 10.1i)T - 83iT^{2} \) |
| 89 | \( 1 + (9.59 + 9.59i)T + 89iT^{2} \) |
| 97 | \( 1 - 12.9iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.772070867711005912296002790566, −7.966144651036938544116189791178, −6.96255090293903808859758380155, −6.73068723691284212809855493054, −5.63218482187697208061944098187, −4.34258376860858921646919189797, −3.78084753786864487724513486133, −2.76078340935979603661869283189, −1.09309722451808203246965986989, −0.094593378215346608421253743674,
2.18534391582203803811464869572, 3.11410072956369870397383730344, 4.07130062887782382863923645108, 4.71169617327424648092240627616, 5.93717507668031176564947937898, 6.72680343709218099123737624455, 7.29897612896617232592364724719, 8.501062681222394262476968619986, 9.255915600376505778842636736391, 9.534834724704969694533574226710