L(s) = 1 | + i·3-s + (2.23 + 0.128i)5-s + (−1.28 + 1.28i)7-s − 9-s + (1.05 + 1.05i)11-s + (−2.22 + 2.22i)13-s + (−0.128 + 2.23i)15-s − 2.52·17-s + (−4.87 + 4.87i)19-s + (−1.28 − 1.28i)21-s + (−5.59 − 5.59i)23-s + (4.96 + 0.575i)25-s − i·27-s + (−0.0348 + 5.38i)29-s + (−2.89 − 2.89i)31-s + ⋯ |
L(s) = 1 | + 0.577i·3-s + (0.998 + 0.0576i)5-s + (−0.485 + 0.485i)7-s − 0.333·9-s + (0.318 + 0.318i)11-s + (−0.616 + 0.616i)13-s + (−0.0332 + 0.576i)15-s − 0.612·17-s + (−1.11 + 1.11i)19-s + (−0.280 − 0.280i)21-s + (−1.16 − 1.16i)23-s + (0.993 + 0.115i)25-s − 0.192i·27-s + (−0.00647 + 0.999i)29-s + (−0.519 − 0.519i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.910 - 0.414i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1740 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.910 - 0.414i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.087078602\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.087078602\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - iT \) |
| 5 | \( 1 + (-2.23 - 0.128i)T \) |
| 29 | \( 1 + (0.0348 - 5.38i)T \) |
good | 7 | \( 1 + (1.28 - 1.28i)T - 7iT^{2} \) |
| 11 | \( 1 + (-1.05 - 1.05i)T + 11iT^{2} \) |
| 13 | \( 1 + (2.22 - 2.22i)T - 13iT^{2} \) |
| 17 | \( 1 + 2.52T + 17T^{2} \) |
| 19 | \( 1 + (4.87 - 4.87i)T - 19iT^{2} \) |
| 23 | \( 1 + (5.59 + 5.59i)T + 23iT^{2} \) |
| 31 | \( 1 + (2.89 + 2.89i)T + 31iT^{2} \) |
| 37 | \( 1 - 1.36iT - 37T^{2} \) |
| 41 | \( 1 + (0.246 - 0.246i)T - 41iT^{2} \) |
| 43 | \( 1 - 5.09iT - 43T^{2} \) |
| 47 | \( 1 + 12.7iT - 47T^{2} \) |
| 53 | \( 1 + (-4.71 - 4.71i)T + 53iT^{2} \) |
| 59 | \( 1 - 10.1iT - 59T^{2} \) |
| 61 | \( 1 + (-2.42 - 2.42i)T + 61iT^{2} \) |
| 67 | \( 1 + (6.93 + 6.93i)T + 67iT^{2} \) |
| 71 | \( 1 - 3.88iT - 71T^{2} \) |
| 73 | \( 1 - 6.92T + 73T^{2} \) |
| 79 | \( 1 + (4.75 - 4.75i)T - 79iT^{2} \) |
| 83 | \( 1 + (-2.68 - 2.68i)T + 83iT^{2} \) |
| 89 | \( 1 + (1.15 - 1.15i)T - 89iT^{2} \) |
| 97 | \( 1 + 10.0iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.697963915595391528341133522678, −8.972467791643941904631732362594, −8.392693336149782246683743972332, −7.06444293668554016163707587685, −6.31102128759468695614800043344, −5.73463644720864513936336338561, −4.67602629763048141061164039283, −3.92118359916463915651045940103, −2.59450856243430616346179349393, −1.87885031709831223847426114869,
0.36780185882411908530353646733, 1.83572904045049131029507396583, 2.68579330495364733726271733975, 3.86551172551966460371706806244, 4.99723451587854518105394865877, 5.91326296239964457604090612430, 6.53941311101130369101559989403, 7.25166648813898152545779398738, 8.179461724130886117336556591692, 9.059689559610692622291217260100