L(s) = 1 | − i·3-s + (2.23 − 0.128i)5-s + (−1.28 − 1.28i)7-s − 9-s + (1.05 − 1.05i)11-s + (−2.22 − 2.22i)13-s + (−0.128 − 2.23i)15-s − 2.52·17-s + (−4.87 − 4.87i)19-s + (−1.28 + 1.28i)21-s + (−5.59 + 5.59i)23-s + (4.96 − 0.575i)25-s + i·27-s + (−0.0348 − 5.38i)29-s + (−2.89 + 2.89i)31-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + (0.998 − 0.0576i)5-s + (−0.485 − 0.485i)7-s − 0.333·9-s + (0.318 − 0.318i)11-s + (−0.616 − 0.616i)13-s + (−0.0332 − 0.576i)15-s − 0.612·17-s + (−1.11 − 1.11i)19-s + (−0.280 + 0.280i)21-s + (−1.16 + 1.16i)23-s + (0.993 − 0.115i)25-s + 0.192i·27-s + (−0.00647 − 0.999i)29-s + (−0.519 + 0.519i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.910 + 0.414i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1740 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.910 + 0.414i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.087078602\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.087078602\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + iT \) |
| 5 | \( 1 + (-2.23 + 0.128i)T \) |
| 29 | \( 1 + (0.0348 + 5.38i)T \) |
good | 7 | \( 1 + (1.28 + 1.28i)T + 7iT^{2} \) |
| 11 | \( 1 + (-1.05 + 1.05i)T - 11iT^{2} \) |
| 13 | \( 1 + (2.22 + 2.22i)T + 13iT^{2} \) |
| 17 | \( 1 + 2.52T + 17T^{2} \) |
| 19 | \( 1 + (4.87 + 4.87i)T + 19iT^{2} \) |
| 23 | \( 1 + (5.59 - 5.59i)T - 23iT^{2} \) |
| 31 | \( 1 + (2.89 - 2.89i)T - 31iT^{2} \) |
| 37 | \( 1 + 1.36iT - 37T^{2} \) |
| 41 | \( 1 + (0.246 + 0.246i)T + 41iT^{2} \) |
| 43 | \( 1 + 5.09iT - 43T^{2} \) |
| 47 | \( 1 - 12.7iT - 47T^{2} \) |
| 53 | \( 1 + (-4.71 + 4.71i)T - 53iT^{2} \) |
| 59 | \( 1 + 10.1iT - 59T^{2} \) |
| 61 | \( 1 + (-2.42 + 2.42i)T - 61iT^{2} \) |
| 67 | \( 1 + (6.93 - 6.93i)T - 67iT^{2} \) |
| 71 | \( 1 + 3.88iT - 71T^{2} \) |
| 73 | \( 1 - 6.92T + 73T^{2} \) |
| 79 | \( 1 + (4.75 + 4.75i)T + 79iT^{2} \) |
| 83 | \( 1 + (-2.68 + 2.68i)T - 83iT^{2} \) |
| 89 | \( 1 + (1.15 + 1.15i)T + 89iT^{2} \) |
| 97 | \( 1 - 10.0iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.059689559610692622291217260100, −8.179461724130886117336556591692, −7.25166648813898152545779398738, −6.53941311101130369101559989403, −5.91326296239964457604090612430, −4.99723451587854518105394865877, −3.86551172551966460371706806244, −2.68579330495364733726271733975, −1.83572904045049131029507396583, −0.36780185882411908530353646733,
1.87885031709831223847426114869, 2.59450856243430616346179349393, 3.92118359916463915651045940103, 4.67602629763048141061164039283, 5.73463644720864513936336338561, 6.31102128759468695614800043344, 7.06444293668554016163707587685, 8.392693336149782246683743972332, 8.972467791643941904631732362594, 9.697963915595391528341133522678