L(s) = 1 | − 4-s − 4·5-s − 9-s − 12·11-s + 16-s − 12·19-s + 4·20-s + 11·25-s − 4·29-s + 8·31-s + 36-s − 12·41-s + 12·44-s + 4·45-s + 14·49-s + 48·55-s − 20·59-s − 12·61-s − 64-s − 16·71-s + 12·76-s − 32·79-s − 4·80-s + 81-s + 20·89-s + 48·95-s + 12·99-s + ⋯ |
L(s) = 1 | − 1/2·4-s − 1.78·5-s − 1/3·9-s − 3.61·11-s + 1/4·16-s − 2.75·19-s + 0.894·20-s + 11/5·25-s − 0.742·29-s + 1.43·31-s + 1/6·36-s − 1.87·41-s + 1.80·44-s + 0.596·45-s + 2·49-s + 6.47·55-s − 2.60·59-s − 1.53·61-s − 1/8·64-s − 1.89·71-s + 1.37·76-s − 3.60·79-s − 0.447·80-s + 1/9·81-s + 2.11·89-s + 4.92·95-s + 1.20·99-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 152100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152100 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.85240569269252447258421599262, −10.70809765424301575703797741022, −10.27860822179830146277111877190, −10.09877033016297426394059805825, −8.834150179522979669111286677836, −8.721114826406882882491544725395, −8.262799860054498916787014023187, −7.914469002022591089368447615768, −7.47020225606372979519662389201, −7.16534286090752305271621679780, −6.15728573959655977856396757472, −5.79275595864651550240912883168, −4.98628006169101036492933345719, −4.55528528910644154233824829377, −4.36069336101473660250875034031, −3.28416136422331593769413605176, −2.90566405700736196445289808821, −2.18171372071285739740026906105, 0, 0,
2.18171372071285739740026906105, 2.90566405700736196445289808821, 3.28416136422331593769413605176, 4.36069336101473660250875034031, 4.55528528910644154233824829377, 4.98628006169101036492933345719, 5.79275595864651550240912883168, 6.15728573959655977856396757472, 7.16534286090752305271621679780, 7.47020225606372979519662389201, 7.914469002022591089368447615768, 8.262799860054498916787014023187, 8.721114826406882882491544725395, 8.834150179522979669111286677836, 10.09877033016297426394059805825, 10.27860822179830146277111877190, 10.70809765424301575703797741022, 10.85240569269252447258421599262