Invariants
| Base field: | $\F_{67}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 118 x^{2} + 4489 x^{4}$ |
| Frobenius angles: | $\pm0.0785709304621$, $\pm0.921429069538$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(i, \sqrt{7})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $65$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4372$ | $19114384$ | $90458328244$ | $405868407422976$ | $1822837806662875732$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $68$ | $4254$ | $300764$ | $20141230$ | $1350125108$ | $90458274318$ | $6060711605324$ | $406067709235294$ | $27206534396294948$ | $1822837808773990014$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 65 curves (of which all are hyperelliptic):
- $y^2=11 x^6+38 x^5+59 x^4+30 x^3+66 x^2+32 x+47$
- $y^2=36 x^6+24 x^5+10 x^4+49 x^3+61 x^2+14 x+41$
- $y^2=51 x^6+11 x^5+18 x^4+46 x^3+27 x^2+64 x+31$
- $y^2=50 x^6+x^5+16 x^4+41 x^3+5 x^2+55 x+24$
- $y^2=51 x^6+4 x^5+52 x^3+33 x+10$
- $y^2=8 x^6+33 x^5+50 x^4+25 x^3+x^2+59 x+24$
- $y^2=8 x^6+39 x^5+4 x^4+33 x^2+13 x+45$
- $y^2=60 x^6+24 x^5+63 x^4+37 x^3+44 x^2+23 x+14$
- $y^2=53 x^6+48 x^5+59 x^4+7 x^3+21 x^2+46 x+28$
- $y^2=5 x^6+56 x^5+17 x^4+46 x^3+57 x^2+21 x+59$
- $y^2=20 x^6+12 x^5+13 x^4+66 x^3+44 x^2+39 x+66$
- $y^2=40 x^6+15 x^5+56 x^4+2 x^3+27 x^2+65 x+51$
- $y^2=13 x^6+30 x^5+45 x^4+4 x^3+54 x^2+63 x+35$
- $y^2=49 x^6+26 x^4+3 x^3+45 x^2+2$
- $y^2=35 x^6+24 x^5+37 x^4+50 x^2+22 x+34$
- $y^2=54 x^6+26 x^5+2 x^4+61 x^3+26 x^2+42 x+42$
- $y^2=41 x^6+52 x^5+4 x^4+55 x^3+52 x^2+17 x+17$
- $y^2=x^6+31 x^5+26 x^4+11 x^3+19 x^2+24 x+3$
- $y^2=2 x^6+62 x^5+52 x^4+22 x^3+38 x^2+48 x+6$
- $y^2=41 x^6+44 x^5+10 x^4+57 x^3+6 x^2+53 x+61$
- and 45 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67^{2}}$.
Endomorphism algebra over $\F_{67}$| The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{7})\). |
| The base change of $A$ to $\F_{67^{2}}$ is 1.4489.aeo 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-7}) \)$)$ |
Base change
This is a primitive isogeny class.