Properties

Label 2-3276-1.1-c1-0-22
Degree $2$
Conductor $3276$
Sign $-1$
Analytic cond. $26.1589$
Root an. cond. $5.11458$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s + 2·11-s − 13-s − 4·17-s + 4·19-s − 2·23-s − 5·25-s − 6·29-s + 10·37-s − 4·41-s − 4·43-s + 49-s − 10·53-s − 4·59-s − 2·61-s + 6·71-s + 14·73-s − 2·77-s − 4·79-s − 16·83-s − 12·89-s + 91-s + 6·97-s + 8·103-s − 18·107-s − 10·109-s + 14·113-s + ⋯
L(s)  = 1  − 0.377·7-s + 0.603·11-s − 0.277·13-s − 0.970·17-s + 0.917·19-s − 0.417·23-s − 25-s − 1.11·29-s + 1.64·37-s − 0.624·41-s − 0.609·43-s + 1/7·49-s − 1.37·53-s − 0.520·59-s − 0.256·61-s + 0.712·71-s + 1.63·73-s − 0.227·77-s − 0.450·79-s − 1.75·83-s − 1.27·89-s + 0.104·91-s + 0.609·97-s + 0.788·103-s − 1.74·107-s − 0.957·109-s + 1.31·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3276\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(26.1589\)
Root analytic conductor: \(5.11458\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3276,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
13 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.187779556583543071802035119636, −7.56386095768078836949457966906, −6.71701075830552720669434017289, −6.09510035748296873349035012747, −5.24551383519126216163915722891, −4.29345851534004351357225561275, −3.58004430162338775504314652387, −2.55231147487554452797225259181, −1.50974998810809266451094332019, 0, 1.50974998810809266451094332019, 2.55231147487554452797225259181, 3.58004430162338775504314652387, 4.29345851534004351357225561275, 5.24551383519126216163915722891, 6.09510035748296873349035012747, 6.71701075830552720669434017289, 7.56386095768078836949457966906, 8.187779556583543071802035119636

Graph of the $Z$-function along the critical line