L(s) = 1 | + 3-s + 2·5-s − 4·7-s + 9-s + 6·11-s + 2·15-s + 2·17-s − 4·21-s + 8·23-s − 25-s + 27-s + 2·29-s − 8·31-s + 6·33-s − 8·35-s − 8·37-s − 2·41-s + 8·43-s + 2·45-s + 6·47-s + 9·49-s + 2·51-s + 6·53-s + 12·55-s + 2·59-s + 2·61-s − 4·63-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.894·5-s − 1.51·7-s + 1/3·9-s + 1.80·11-s + 0.516·15-s + 0.485·17-s − 0.872·21-s + 1.66·23-s − 1/5·25-s + 0.192·27-s + 0.371·29-s − 1.43·31-s + 1.04·33-s − 1.35·35-s − 1.31·37-s − 0.312·41-s + 1.21·43-s + 0.298·45-s + 0.875·47-s + 9/7·49-s + 0.280·51-s + 0.824·53-s + 1.61·55-s + 0.260·59-s + 0.256·61-s − 0.503·63-s + ⋯ |
Λ(s)=(=(2028s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(2028s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.501592560 |
L(21) |
≈ |
2.501592560 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) | Isogeny Class over Fp |
---|
bad | 2 | 1 | |
| 3 | 1−T | |
| 13 | 1 | |
good | 5 | 1−2T+pT2 | 1.5.ac |
| 7 | 1+4T+pT2 | 1.7.e |
| 11 | 1−6T+pT2 | 1.11.ag |
| 17 | 1−2T+pT2 | 1.17.ac |
| 19 | 1+pT2 | 1.19.a |
| 23 | 1−8T+pT2 | 1.23.ai |
| 29 | 1−2T+pT2 | 1.29.ac |
| 31 | 1+8T+pT2 | 1.31.i |
| 37 | 1+8T+pT2 | 1.37.i |
| 41 | 1+2T+pT2 | 1.41.c |
| 43 | 1−8T+pT2 | 1.43.ai |
| 47 | 1−6T+pT2 | 1.47.ag |
| 53 | 1−6T+pT2 | 1.53.ag |
| 59 | 1−2T+pT2 | 1.59.ac |
| 61 | 1−2T+pT2 | 1.61.ac |
| 67 | 1−4T+pT2 | 1.67.ae |
| 71 | 1−6T+pT2 | 1.71.ag |
| 73 | 1−4T+pT2 | 1.73.ae |
| 79 | 1+pT2 | 1.79.a |
| 83 | 1−14T+pT2 | 1.83.ao |
| 89 | 1+6T+pT2 | 1.89.g |
| 97 | 1+12T+pT2 | 1.97.m |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.097345964318492334723562115689, −8.847995063019436691526938067713, −7.34210278452480828621204466217, −6.77539691873077915389895911176, −6.13802705357204697531670904552, −5.26231588330551344370909293821, −3.87277603536411382354108264341, −3.37774050268429728726511902097, −2.27746946626923832361262697439, −1.09332650405258333005382089074,
1.09332650405258333005382089074, 2.27746946626923832361262697439, 3.37774050268429728726511902097, 3.87277603536411382354108264341, 5.26231588330551344370909293821, 6.13802705357204697531670904552, 6.77539691873077915389895911176, 7.34210278452480828621204466217, 8.847995063019436691526938067713, 9.097345964318492334723562115689