sage:E = EllipticCurve("f1")
E.isogeny_class()
sage:E.rank()
The elliptic curves in class 2028.f have
rank 0.
| |
| Bad L-factors: |
| Prime |
L-Factor |
| 2 | 1 |
| 3 | 1−T |
| 13 | 1 |
|
| |
| Good L-factors: |
| Prime |
L-Factor |
Isogeny Class over Fp |
| 5 |
1−2T+5T2 |
1.5.ac
|
| 7 |
1+4T+7T2 |
1.7.e
|
| 11 |
1−6T+11T2 |
1.11.ag
|
| 17 |
1−2T+17T2 |
1.17.ac
|
| 19 |
1+19T2 |
1.19.a
|
| 23 |
1−8T+23T2 |
1.23.ai
|
| 29 |
1−2T+29T2 |
1.29.ac
|
| ⋯ | ⋯ | ⋯ |
|
| |
| See L-function page for more information |
The elliptic curves in class 2028.f do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.
Elliptic curves in class 2028.f
sage:E.isogeny_class().curves
| LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
| 2028.f1 |
2028e2 |
[0,1,0,−212,−1260] |
1882384/3 |
1687296 |
[2] |
576 |
0.092613
|
|
| 2028.f2 |
2028e1 |
[0,1,0,−17,−12] |
16384/9 |
316368 |
[2] |
288 |
−0.25396
|
Γ0(N)-optimal |