Properties

Label 2028.f
Number of curves 22
Conductor 20282028
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 2028.f have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
331T1 - T
131311
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
55 12T+5T2 1 - 2 T + 5 T^{2} 1.5.ac
77 1+4T+7T2 1 + 4 T + 7 T^{2} 1.7.e
1111 16T+11T2 1 - 6 T + 11 T^{2} 1.11.ag
1717 12T+17T2 1 - 2 T + 17 T^{2} 1.17.ac
1919 1+19T2 1 + 19 T^{2} 1.19.a
2323 18T+23T2 1 - 8 T + 23 T^{2} 1.23.ai
2929 12T+29T2 1 - 2 T + 29 T^{2} 1.29.ac
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 2028.f do not have complex multiplication.

Modular form 2028.2.a.f

Copy content sage:E.q_eigenform(10)
 
q+q3+2q54q7+q9+6q11+2q15+2q17+O(q20)q + q^{3} + 2 q^{5} - 4 q^{7} + q^{9} + 6 q^{11} + 2 q^{15} + 2 q^{17} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 2028.f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2028.f1 2028e2 [0,1,0,212,1260][0, 1, 0, -212, -1260] 1882384/31882384/3 16872961687296 [2][2] 576576 0.0926130.092613  
2028.f2 2028e1 [0,1,0,17,12][0, 1, 0, -17, -12] 16384/916384/9 316368316368 [2][2] 288288 0.25396-0.25396 Γ0(N)\Gamma_0(N)-optimal