L(s) = 1 | + 2-s + 2·4-s + 5·8-s − 6·9-s − 4·11-s + 5·16-s − 6·18-s − 4·22-s + 8·23-s − 2·29-s + 10·32-s − 12·36-s − 6·37-s − 12·43-s − 8·44-s + 8·46-s + 20·53-s − 2·58-s + 17·64-s + 4·67-s − 16·71-s − 30·72-s − 6·74-s − 8·79-s + 27·81-s − 12·86-s − 20·88-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 4-s + 1.76·8-s − 2·9-s − 1.20·11-s + 5/4·16-s − 1.41·18-s − 0.852·22-s + 1.66·23-s − 0.371·29-s + 1.76·32-s − 2·36-s − 0.986·37-s − 1.82·43-s − 1.20·44-s + 1.17·46-s + 2.74·53-s − 0.262·58-s + 17/8·64-s + 0.488·67-s − 1.89·71-s − 3.53·72-s − 0.697·74-s − 0.900·79-s + 3·81-s − 1.29·86-s − 2.13·88-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1500625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1500625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.990155320\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.990155320\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.01959184322465980084712559146, −9.699600750910145630848530593743, −8.806359948205660945161948872373, −8.641272752858889519330169278661, −8.428496916064441131782653601895, −7.70283930173604069466681300658, −7.50444860976862356443729336925, −6.92726841305019761257651557534, −6.74953425220276383926801424219, −6.01411625363100731726211490944, −5.54831764284406831054848586852, −5.39576834090927669355728915322, −4.86967648718154815102593211128, −4.50964608075976483409271282677, −3.68350998539542172005763398597, −3.16583587986373159734214660538, −2.85543615097272829993642620410, −2.28095635488370275222297630382, −1.73895422661891684138330226755, −0.62722834978033193815539962648,
0.62722834978033193815539962648, 1.73895422661891684138330226755, 2.28095635488370275222297630382, 2.85543615097272829993642620410, 3.16583587986373159734214660538, 3.68350998539542172005763398597, 4.50964608075976483409271282677, 4.86967648718154815102593211128, 5.39576834090927669355728915322, 5.54831764284406831054848586852, 6.01411625363100731726211490944, 6.74953425220276383926801424219, 6.92726841305019761257651557534, 7.50444860976862356443729336925, 7.70283930173604069466681300658, 8.428496916064441131782653601895, 8.641272752858889519330169278661, 8.806359948205660945161948872373, 9.699600750910145630848530593743, 10.01959184322465980084712559146