Properties

Label 1225.2.a.t.1.1
Level $1225$
Weight $2$
Character 1225.1
Self dual yes
Analytic conductor $9.782$
Analytic rank $0$
Dimension $2$
CM discriminant -7
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1225,2,Mod(1,1225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1225 = 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.78167424761\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{21}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $N(\mathrm{U}(1))$

Embedding invariants

Embedding label 1.1
Root \(-1.79129\) of defining polynomial
Character \(\chi\) \(=\) 1225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.79129 q^{2} +1.20871 q^{4} +1.41742 q^{8} -3.00000 q^{9} +O(q^{10})\) \(q-1.79129 q^{2} +1.20871 q^{4} +1.41742 q^{8} -3.00000 q^{9} -6.58258 q^{11} -4.95644 q^{16} +5.37386 q^{18} +11.7913 q^{22} +8.58258 q^{23} +8.16515 q^{29} +6.04356 q^{32} -3.62614 q^{36} -12.1652 q^{37} -1.41742 q^{43} -7.95644 q^{44} -15.3739 q^{46} +10.0000 q^{53} -14.6261 q^{58} -0.912878 q^{64} +15.7477 q^{67} -3.41742 q^{71} -4.25227 q^{72} +21.7913 q^{74} +9.74773 q^{79} +9.00000 q^{81} +2.53901 q^{86} -9.33030 q^{88} +10.3739 q^{92} +19.7477 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + 7 q^{4} + 12 q^{8} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{2} + 7 q^{4} + 12 q^{8} - 6 q^{9} - 4 q^{11} + 13 q^{16} - 3 q^{18} + 19 q^{22} + 8 q^{23} - 2 q^{29} + 35 q^{32} - 21 q^{36} - 6 q^{37} - 12 q^{43} + 7 q^{44} - 17 q^{46} + 20 q^{53} - 43 q^{58} + 44 q^{64} + 4 q^{67} - 16 q^{71} - 36 q^{72} + 39 q^{74} - 8 q^{79} + 18 q^{81} - 27 q^{86} + 18 q^{88} + 7 q^{92} + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.79129 −1.26663 −0.633316 0.773893i \(-0.718307\pi\)
−0.633316 + 0.773893i \(0.718307\pi\)
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) 1.20871 0.604356
\(5\) 0 0
\(6\) 0 0
\(7\) 0 0
\(8\) 1.41742 0.501135
\(9\) −3.00000 −1.00000
\(10\) 0 0
\(11\) −6.58258 −1.98472 −0.992361 0.123371i \(-0.960630\pi\)
−0.992361 + 0.123371i \(0.960630\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −4.95644 −1.23911
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 5.37386 1.26663
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 11.7913 2.51391
\(23\) 8.58258 1.78959 0.894795 0.446476i \(-0.147321\pi\)
0.894795 + 0.446476i \(0.147321\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 8.16515 1.51623 0.758115 0.652121i \(-0.226120\pi\)
0.758115 + 0.652121i \(0.226120\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 6.04356 1.06836
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −3.62614 −0.604356
\(37\) −12.1652 −1.99994 −0.999969 0.00783774i \(-0.997505\pi\)
−0.999969 + 0.00783774i \(0.997505\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −1.41742 −0.216155 −0.108078 0.994142i \(-0.534469\pi\)
−0.108078 + 0.994142i \(0.534469\pi\)
\(44\) −7.95644 −1.19948
\(45\) 0 0
\(46\) −15.3739 −2.26675
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 10.0000 1.37361 0.686803 0.726844i \(-0.259014\pi\)
0.686803 + 0.726844i \(0.259014\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −14.6261 −1.92051
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −0.912878 −0.114110
\(65\) 0 0
\(66\) 0 0
\(67\) 15.7477 1.92389 0.961946 0.273241i \(-0.0880957\pi\)
0.961946 + 0.273241i \(0.0880957\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −3.41742 −0.405574 −0.202787 0.979223i \(-0.565000\pi\)
−0.202787 + 0.979223i \(0.565000\pi\)
\(72\) −4.25227 −0.501135
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 21.7913 2.53319
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 9.74773 1.09670 0.548352 0.836247i \(-0.315255\pi\)
0.548352 + 0.836247i \(0.315255\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 2.53901 0.273789
\(87\) 0 0
\(88\) −9.33030 −0.994614
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 10.3739 1.08155
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 0 0
\(99\) 19.7477 1.98472
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −17.9129 −1.73985
\(107\) 20.0000 1.93347 0.966736 0.255774i \(-0.0823304\pi\)
0.966736 + 0.255774i \(0.0823304\pi\)
\(108\) 0 0
\(109\) −18.1652 −1.73991 −0.869953 0.493135i \(-0.835851\pi\)
−0.869953 + 0.493135i \(0.835851\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 19.3303 1.81844 0.909221 0.416314i \(-0.136678\pi\)
0.909221 + 0.416314i \(0.136678\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 9.86932 0.916343
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 32.3303 2.93912
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −5.74773 −0.510028 −0.255014 0.966937i \(-0.582080\pi\)
−0.255014 + 0.966937i \(0.582080\pi\)
\(128\) −10.4519 −0.923826
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −28.2087 −2.43686
\(135\) 0 0
\(136\) 0 0
\(137\) 10.0000 0.854358 0.427179 0.904167i \(-0.359507\pi\)
0.427179 + 0.904167i \(0.359507\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 6.12159 0.513712
\(143\) 0 0
\(144\) 14.8693 1.23911
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −14.7042 −1.20868
\(149\) −1.83485 −0.150317 −0.0751583 0.997172i \(-0.523946\pi\)
−0.0751583 + 0.997172i \(0.523946\pi\)
\(150\) 0 0
\(151\) 16.5826 1.34947 0.674735 0.738060i \(-0.264258\pi\)
0.674735 + 0.738060i \(0.264258\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) −17.4610 −1.38912
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −16.1216 −1.26663
\(163\) 20.0000 1.56652 0.783260 0.621694i \(-0.213555\pi\)
0.783260 + 0.621694i \(0.213555\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) −1.71326 −0.130635
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 32.6261 2.45929
\(177\) 0 0
\(178\) 0 0
\(179\) 4.00000 0.298974 0.149487 0.988764i \(-0.452238\pi\)
0.149487 + 0.988764i \(0.452238\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 12.1652 0.896827
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 0 0
\(193\) −9.33030 −0.671610 −0.335805 0.941932i \(-0.609008\pi\)
−0.335805 + 0.941932i \(0.609008\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −22.1652 −1.57920 −0.789601 0.613621i \(-0.789712\pi\)
−0.789601 + 0.613621i \(0.789712\pi\)
\(198\) −35.3739 −2.51391
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −25.7477 −1.78959
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 12.0871 0.830147
\(213\) 0 0
\(214\) −35.8258 −2.44900
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 32.5390 2.20382
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −34.6261 −2.30330
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 11.5735 0.759836
\(233\) 29.3303 1.92149 0.960746 0.277429i \(-0.0894825\pi\)
0.960746 + 0.277429i \(0.0894825\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 16.0000 1.03495 0.517477 0.855697i \(-0.326871\pi\)
0.517477 + 0.855697i \(0.326871\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) −57.9129 −3.72278
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) −56.4955 −3.55184
\(254\) 10.2958 0.646018
\(255\) 0 0
\(256\) 20.5481 1.28426
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −24.4955 −1.51623
\(262\) 0 0
\(263\) 11.4174 0.704029 0.352014 0.935995i \(-0.385497\pi\)
0.352014 + 0.935995i \(0.385497\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 19.0345 1.16272
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −17.9129 −1.08216
\(275\) 0 0
\(276\) 0 0
\(277\) 10.0000 0.600842 0.300421 0.953807i \(-0.402873\pi\)
0.300421 + 0.953807i \(0.402873\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 31.3303 1.86901 0.934505 0.355951i \(-0.115843\pi\)
0.934505 + 0.355951i \(0.115843\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) −4.13068 −0.245111
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −18.1307 −1.06836
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −17.2432 −1.00224
\(297\) 0 0
\(298\) 3.28674 0.190396
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −29.7042 −1.70928
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 11.7822 0.662800
\(317\) −7.83485 −0.440049 −0.220024 0.975494i \(-0.570614\pi\)
−0.220024 + 0.975494i \(0.570614\pi\)
\(318\) 0 0
\(319\) −53.7477 −3.00929
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 10.8784 0.604356
\(325\) 0 0
\(326\) −35.8258 −1.98421
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −13.4174 −0.737488 −0.368744 0.929531i \(-0.620212\pi\)
−0.368744 + 0.929531i \(0.620212\pi\)
\(332\) 0 0
\(333\) 36.4955 1.99994
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −30.0000 −1.63420 −0.817102 0.576493i \(-0.804421\pi\)
−0.817102 + 0.576493i \(0.804421\pi\)
\(338\) 23.2867 1.26663
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) −2.00909 −0.108323
\(345\) 0 0
\(346\) 0 0
\(347\) −30.0780 −1.61467 −0.807337 0.590091i \(-0.799092\pi\)
−0.807337 + 0.590091i \(0.799092\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −39.7822 −2.12040
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −7.16515 −0.378690
\(359\) −36.0780 −1.90413 −0.952063 0.305903i \(-0.901042\pi\)
−0.952063 + 0.305903i \(0.901042\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) −42.5390 −2.21750
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −16.4955 −0.854102 −0.427051 0.904227i \(-0.640448\pi\)
−0.427051 + 0.904227i \(0.640448\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −26.0780 −1.33954 −0.669769 0.742569i \(-0.733607\pi\)
−0.669769 + 0.742569i \(0.733607\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −14.3303 −0.733202
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 16.7133 0.850682
\(387\) 4.25227 0.216155
\(388\) 0 0
\(389\) 28.1652 1.42803 0.714015 0.700130i \(-0.246875\pi\)
0.714015 + 0.700130i \(0.246875\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 39.7042 2.00027
\(395\) 0 0
\(396\) 23.8693 1.19948
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.33030 −0.0664322 −0.0332161 0.999448i \(-0.510575\pi\)
−0.0332161 + 0.999448i \(0.510575\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 80.0780 3.96932
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 46.1216 2.26675
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −14.4955 −0.706465 −0.353233 0.935536i \(-0.614918\pi\)
−0.353233 + 0.935536i \(0.614918\pi\)
\(422\) 21.4955 1.04638
\(423\) 0 0
\(424\) 14.1742 0.688362
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 24.1742 1.16851
\(429\) 0 0
\(430\) 0 0
\(431\) 32.0000 1.54139 0.770693 0.637207i \(-0.219910\pi\)
0.770693 + 0.637207i \(0.219910\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −21.9564 −1.05152
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 20.0000 0.950229 0.475114 0.879924i \(-0.342407\pi\)
0.475114 + 0.879924i \(0.342407\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −37.6606 −1.77731 −0.888657 0.458573i \(-0.848361\pi\)
−0.888657 + 0.458573i \(0.848361\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 23.3648 1.09899
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 33.6606 1.57458 0.787288 0.616585i \(-0.211484\pi\)
0.787288 + 0.616585i \(0.211484\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 40.0000 1.85896 0.929479 0.368875i \(-0.120257\pi\)
0.929479 + 0.368875i \(0.120257\pi\)
\(464\) −40.4701 −1.87878
\(465\) 0 0
\(466\) −52.5390 −2.43382
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 9.33030 0.429008
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −30.0000 −1.37361
\(478\) −28.6606 −1.31091
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 39.0780 1.77627
\(485\) 0 0
\(486\) 0 0
\(487\) 20.0780 0.909822 0.454911 0.890537i \(-0.349671\pi\)
0.454911 + 0.890537i \(0.349671\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −26.5826 −1.19965 −0.599827 0.800129i \(-0.704764\pi\)
−0.599827 + 0.800129i \(0.704764\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 36.0000 1.61158 0.805791 0.592200i \(-0.201741\pi\)
0.805791 + 0.592200i \(0.201741\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 101.200 4.49887
\(507\) 0 0
\(508\) −6.94735 −0.308239
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −15.9038 −0.702855
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 43.8784 1.92051
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −20.4519 −0.891745
\(527\) 0 0
\(528\) 0 0
\(529\) 50.6606 2.20264
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 22.3212 0.964129
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 44.4955 1.91301 0.956504 0.291718i \(-0.0942267\pi\)
0.956504 + 0.291718i \(0.0942267\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 35.7477 1.52846 0.764231 0.644942i \(-0.223119\pi\)
0.764231 + 0.644942i \(0.223119\pi\)
\(548\) 12.0871 0.516336
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −17.9129 −0.761045
\(555\) 0 0
\(556\) 0 0
\(557\) 32.1652 1.36288 0.681441 0.731873i \(-0.261354\pi\)
0.681441 + 0.731873i \(0.261354\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −56.1216 −2.36735
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) −4.84394 −0.203247
\(569\) −47.6606 −1.99804 −0.999018 0.0443003i \(-0.985894\pi\)
−0.999018 + 0.0443003i \(0.985894\pi\)
\(570\) 0 0
\(571\) 39.2432 1.64228 0.821138 0.570730i \(-0.193340\pi\)
0.821138 + 0.570730i \(0.193340\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 2.73864 0.114110
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) 30.4519 1.26663
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −65.8258 −2.72622
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 60.2958 2.47814
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −2.21780 −0.0908448
\(597\) 0 0
\(598\) 0 0
\(599\) 16.0780 0.656930 0.328465 0.944516i \(-0.393469\pi\)
0.328465 + 0.944516i \(0.393469\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0 0
\(603\) −47.2432 −1.92389
\(604\) 20.0436 0.815561
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −46.4955 −1.87793 −0.938967 0.344008i \(-0.888215\pi\)
−0.938967 + 0.344008i \(0.888215\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 23.6606 0.952540 0.476270 0.879299i \(-0.341988\pi\)
0.476270 + 0.879299i \(0.341988\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −49.2432 −1.96034 −0.980170 0.198158i \(-0.936504\pi\)
−0.980170 + 0.198158i \(0.936504\pi\)
\(632\) 13.8167 0.549597
\(633\) 0 0
\(634\) 14.0345 0.557380
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 96.2777 3.81167
\(639\) 10.2523 0.405574
\(640\) 0 0
\(641\) −41.3303 −1.63245 −0.816224 0.577735i \(-0.803937\pi\)
−0.816224 + 0.577735i \(0.803937\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 12.7568 0.501135
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 24.1742 0.946736
\(653\) −50.0000 −1.95665 −0.978326 0.207072i \(-0.933606\pi\)
−0.978326 + 0.207072i \(0.933606\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 44.0000 1.71400 0.856998 0.515319i \(-0.172327\pi\)
0.856998 + 0.515319i \(0.172327\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 24.0345 0.934126
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −65.3739 −2.53319
\(667\) 70.0780 2.71343
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −30.0000 −1.15642 −0.578208 0.815890i \(-0.696248\pi\)
−0.578208 + 0.815890i \(0.696248\pi\)
\(674\) 53.7386 2.06993
\(675\) 0 0
\(676\) −15.7133 −0.604356
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −21.4174 −0.819515 −0.409757 0.912194i \(-0.634387\pi\)
−0.409757 + 0.912194i \(0.634387\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 7.02538 0.267840
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 53.8784 2.04520
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 2.00000 0.0755390 0.0377695 0.999286i \(-0.487975\pi\)
0.0377695 + 0.999286i \(0.487975\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 6.00909 0.226476
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −6.00000 −0.225335 −0.112667 0.993633i \(-0.535939\pi\)
−0.112667 + 0.993633i \(0.535939\pi\)
\(710\) 0 0
\(711\) −29.2432 −1.09670
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 4.83485 0.180687
\(717\) 0 0
\(718\) 64.6261 2.41183
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 34.0345 1.26663
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 51.8693 1.91193
\(737\) −103.661 −3.81839
\(738\) 0 0
\(739\) 39.7477 1.46214 0.731072 0.682300i \(-0.239020\pi\)
0.731072 + 0.682300i \(0.239020\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 40.0000 1.46746 0.733729 0.679442i \(-0.237778\pi\)
0.733729 + 0.679442i \(0.237778\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 29.5481 1.08183
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −48.0000 −1.75154 −0.875772 0.482724i \(-0.839647\pi\)
−0.875772 + 0.482724i \(0.839647\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −17.8348 −0.648219 −0.324109 0.946020i \(-0.605065\pi\)
−0.324109 + 0.946020i \(0.605065\pi\)
\(758\) 46.7133 1.69670
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 9.66970 0.349837
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −11.2777 −0.405892
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) −7.61704 −0.273789
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −50.4519 −1.80879
\(779\) 0 0
\(780\) 0 0
\(781\) 22.4955 0.804951
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) −26.7913 −0.954400
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 27.9909 0.994614
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 2.38296 0.0841451
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −17.6606 −0.620914 −0.310457 0.950587i \(-0.600482\pi\)
−0.310457 + 0.950587i \(0.600482\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −143.443 −5.02767
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 22.0000 0.767805 0.383903 0.923374i \(-0.374580\pi\)
0.383903 + 0.923374i \(0.374580\pi\)
\(822\) 0 0
\(823\) 57.2432 1.99537 0.997686 0.0679910i \(-0.0216589\pi\)
0.997686 + 0.0679910i \(0.0216589\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −10.0780 −0.350447 −0.175224 0.984529i \(-0.556065\pi\)
−0.175224 + 0.984529i \(0.556065\pi\)
\(828\) −31.1216 −1.08155
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 37.6697 1.29896
\(842\) 25.9655 0.894831
\(843\) 0 0
\(844\) −14.5045 −0.499267
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −49.5644 −1.70205
\(849\) 0 0
\(850\) 0 0
\(851\) −104.408 −3.57907
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 28.3485 0.968931
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −57.3212 −1.95237
\(863\) 54.4083 1.85208 0.926041 0.377424i \(-0.123190\pi\)
0.926041 + 0.377424i \(0.123190\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −64.1652 −2.17665
\(870\) 0 0
\(871\) 0 0
\(872\) −25.7477 −0.871928
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −50.0000 −1.68838 −0.844190 0.536044i \(-0.819918\pi\)
−0.844190 + 0.536044i \(0.819918\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 44.4083 1.49446 0.747230 0.664566i \(-0.231383\pi\)
0.747230 + 0.664566i \(0.231383\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −35.8258 −1.20359
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −59.2432 −1.98472
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 67.4610 2.25120
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 27.3992 0.911285
\(905\) 0 0
\(906\) 0 0
\(907\) −60.0000 −1.99227 −0.996134 0.0878507i \(-0.972000\pi\)
−0.996134 + 0.0878507i \(0.972000\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 42.4083 1.40505 0.702525 0.711659i \(-0.252056\pi\)
0.702525 + 0.711659i \(0.252056\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −60.2958 −1.99441
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 56.0780 1.84984 0.924922 0.380158i \(-0.124130\pi\)
0.924922 + 0.380158i \(0.124130\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) −71.6515 −2.35461
\(927\) 0 0
\(928\) 49.3466 1.61988
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 35.4519 1.16127
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) −16.7133 −0.543395
\(947\) 20.0000 0.649913 0.324956 0.945729i \(-0.394650\pi\)
0.324956 + 0.945729i \(0.394650\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 10.6697 0.345625 0.172813 0.984955i \(-0.444714\pi\)
0.172813 + 0.984955i \(0.444714\pi\)
\(954\) 53.7386 1.73985
\(955\) 0 0
\(956\) 19.3394 0.625481
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) −60.0000 −1.93347
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 40.0000 1.28631 0.643157 0.765735i \(-0.277624\pi\)
0.643157 + 0.765735i \(0.277624\pi\)
\(968\) 45.8258 1.47290
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −35.9655 −1.15241
\(975\) 0 0
\(976\) 0 0
\(977\) −13.6606 −0.437041 −0.218521 0.975832i \(-0.570123\pi\)
−0.218521 + 0.975832i \(0.570123\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 54.4955 1.73991
\(982\) 47.6170 1.51952
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −12.1652 −0.386829
\(990\) 0 0
\(991\) 62.4083 1.98247 0.991233 0.132125i \(-0.0421802\pi\)
0.991233 + 0.132125i \(0.0421802\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) −64.4864 −2.04128
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1225.2.a.t.1.1 yes 2
5.2 odd 4 1225.2.b.e.99.2 4
5.3 odd 4 1225.2.b.e.99.3 4
5.4 even 2 1225.2.a.o.1.2 2
7.6 odd 2 CM 1225.2.a.t.1.1 yes 2
35.13 even 4 1225.2.b.e.99.3 4
35.27 even 4 1225.2.b.e.99.2 4
35.34 odd 2 1225.2.a.o.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1225.2.a.o.1.2 2 5.4 even 2
1225.2.a.o.1.2 2 35.34 odd 2
1225.2.a.t.1.1 yes 2 1.1 even 1 trivial
1225.2.a.t.1.1 yes 2 7.6 odd 2 CM
1225.2.b.e.99.2 4 5.2 odd 4
1225.2.b.e.99.2 4 35.27 even 4
1225.2.b.e.99.3 4 5.3 odd 4
1225.2.b.e.99.3 4 35.13 even 4