Properties

Label 1225.2.a.t
Level $1225$
Weight $2$
Character orbit 1225.a
Self dual yes
Analytic conductor $9.782$
Analytic rank $0$
Dimension $2$
CM discriminant -7
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1225,2,Mod(1,1225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1225.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1225 = 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1225.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.78167424761\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{21}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $N(\mathrm{U}(1))$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{21})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} + (\beta + 3) q^{4} + (2 \beta + 5) q^{8} - 3 q^{9} + (2 \beta - 3) q^{11} + (5 \beta + 4) q^{16} - 3 \beta q^{18} + ( - \beta + 10) q^{22} + ( - 2 \beta + 5) q^{23} + ( - 4 \beta + 1) q^{29} + \cdots + ( - 6 \beta + 9) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + 7 q^{4} + 12 q^{8} - 6 q^{9} - 4 q^{11} + 13 q^{16} - 3 q^{18} + 19 q^{22} + 8 q^{23} - 2 q^{29} + 35 q^{32} - 21 q^{36} - 6 q^{37} - 12 q^{43} + 7 q^{44} - 17 q^{46} + 20 q^{53} - 43 q^{58}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.79129
2.79129
−1.79129 0 1.20871 0 0 0 1.41742 −3.00000 0
1.2 2.79129 0 5.79129 0 0 0 10.5826 −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by \(\Q(\sqrt{-7}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1225.2.a.t yes 2
5.b even 2 1 1225.2.a.o 2
5.c odd 4 2 1225.2.b.e 4
7.b odd 2 1 CM 1225.2.a.t yes 2
35.c odd 2 1 1225.2.a.o 2
35.f even 4 2 1225.2.b.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1225.2.a.o 2 5.b even 2 1
1225.2.a.o 2 35.c odd 2 1
1225.2.a.t yes 2 1.a even 1 1 trivial
1225.2.a.t yes 2 7.b odd 2 1 CM
1225.2.b.e 4 5.c odd 4 2
1225.2.b.e 4 35.f even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1225))\):

\( T_{2}^{2} - T_{2} - 5 \) Copy content Toggle raw display
\( T_{3} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T - 5 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 4T - 17 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 8T - 5 \) Copy content Toggle raw display
$29$ \( T^{2} + 2T - 83 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 6T - 75 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 12T + 15 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( (T - 10)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} - 4T - 185 \) Copy content Toggle raw display
$71$ \( T^{2} + 16T + 43 \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 8T - 173 \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less