L(s) = 1 | − 2·3-s + 3·9-s − 12·11-s + 4·17-s − 10·25-s − 4·27-s + 24·33-s − 8·43-s − 14·49-s − 8·51-s + 12·59-s + 24·67-s + 12·73-s + 20·75-s + 5·81-s − 12·83-s + 8·89-s + 28·97-s − 36·99-s + 16·107-s − 20·113-s + 86·121-s + 127-s + 16·129-s + 131-s + 137-s + 139-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 9-s − 3.61·11-s + 0.970·17-s − 2·25-s − 0.769·27-s + 4.17·33-s − 1.21·43-s − 2·49-s − 1.12·51-s + 1.56·59-s + 2.93·67-s + 1.40·73-s + 2.30·75-s + 5/9·81-s − 1.31·83-s + 0.847·89-s + 2.84·97-s − 3.61·99-s + 1.54·107-s − 1.88·113-s + 7.81·121-s + 0.0887·127-s + 1.40·129-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1557504 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1557504 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.70721800445715600502657637543, −7.42908510259424397801194980381, −6.61084979929999274945585321507, −6.46852629489327197023949075773, −5.56597126052820488051950415035, −5.50835748283028813340348869563, −5.25010915829523959096570683485, −4.80983646216625589523400190905, −4.21259172810034728687825987566, −3.41767268718365275694731336535, −3.12961052873891392238054519582, −2.16189239262552998925883882829, −2.05225824663803178760552738615, −0.69386451230752267708646070580, 0,
0.69386451230752267708646070580, 2.05225824663803178760552738615, 2.16189239262552998925883882829, 3.12961052873891392238054519582, 3.41767268718365275694731336535, 4.21259172810034728687825987566, 4.80983646216625589523400190905, 5.25010915829523959096570683485, 5.50835748283028813340348869563, 5.56597126052820488051950415035, 6.46852629489327197023949075773, 6.61084979929999274945585321507, 7.42908510259424397801194980381, 7.70721800445715600502657637543