L(s) = 1 | − 6·9-s − 2·11-s − 12·17-s + 8·19-s + 25-s + 20·41-s + 2·49-s − 8·59-s − 16·67-s − 28·73-s + 27·81-s − 16·83-s − 12·89-s + 4·97-s + 12·99-s + 16·107-s + 4·113-s + 3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 72·153-s + 157-s + 163-s + ⋯ |
L(s) = 1 | − 2·9-s − 0.603·11-s − 2.91·17-s + 1.83·19-s + 1/5·25-s + 3.12·41-s + 2/7·49-s − 1.04·59-s − 1.95·67-s − 3.27·73-s + 3·81-s − 1.75·83-s − 1.27·89-s + 0.406·97-s + 1.20·99-s + 1.54·107-s + 0.376·113-s + 3/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 5.82·153-s + 0.0798·157-s + 0.0783·163-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1548800 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1548800 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6717433918\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6717433918\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.65072157489903981742781242784, −7.58115128738550044456594424531, −7.20980006114155286473947341742, −6.29670229400537650729444321883, −6.28118370578645402196158692333, −5.68465863116436055914602607048, −5.40941065075534095194244033749, −4.72738046016517462376134223046, −4.42524465686514871694159803405, −3.85885873293086675338957904608, −2.88180193076351113983639438164, −2.85668379629979186422132050434, −2.41167181005319106364125353977, −1.46303061533755639665183373410, −0.34023611415718700769027809145,
0.34023611415718700769027809145, 1.46303061533755639665183373410, 2.41167181005319106364125353977, 2.85668379629979186422132050434, 2.88180193076351113983639438164, 3.85885873293086675338957904608, 4.42524465686514871694159803405, 4.72738046016517462376134223046, 5.40941065075534095194244033749, 5.68465863116436055914602607048, 6.28118370578645402196158692333, 6.29670229400537650729444321883, 7.20980006114155286473947341742, 7.58115128738550044456594424531, 7.65072157489903981742781242784