Properties

Label 4-1548800-1.1-c1e2-0-0
Degree $4$
Conductor $1548800$
Sign $1$
Analytic cond. $98.7528$
Root an. cond. $3.15237$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·9-s − 2·11-s − 12·17-s + 8·19-s + 25-s + 20·41-s + 2·49-s − 8·59-s − 16·67-s − 28·73-s + 27·81-s − 16·83-s − 12·89-s + 4·97-s + 12·99-s + 16·107-s + 4·113-s + 3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 72·153-s + 157-s + 163-s + ⋯
L(s)  = 1  − 2·9-s − 0.603·11-s − 2.91·17-s + 1.83·19-s + 1/5·25-s + 3.12·41-s + 2/7·49-s − 1.04·59-s − 1.95·67-s − 3.27·73-s + 3·81-s − 1.75·83-s − 1.27·89-s + 0.406·97-s + 1.20·99-s + 1.54·107-s + 0.376·113-s + 3/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 5.82·153-s + 0.0798·157-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1548800 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1548800 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1548800\)    =    \(2^{9} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(98.7528\)
Root analytic conductor: \(3.15237\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1548800,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6717433918\)
\(L(\frac12)\) \(\approx\) \(0.6717433918\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
11$C_1$ \( ( 1 + T )^{2} \)
good3$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.3.a_g
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.7.a_ac
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.13.a_ak
17$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \) 2.17.m_cs
19$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \) 2.19.ai_cc
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.23.a_be
29$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.29.a_cc
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.31.a_ac
37$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.37.a_aba
41$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \) 2.41.au_ha
43$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.43.a_di
47$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.47.a_da
53$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.53.a_g
59$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \) 2.59.i_fe
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.61.a_eo
67$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \) 2.67.q_hq
71$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.71.a_fm
73$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \) 2.73.bc_ne
79$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \) 2.79.a_adu
83$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \) 2.83.q_iw
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \) 2.89.m_ig
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \) 2.97.ae_hq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.65072157489903981742781242784, −7.58115128738550044456594424531, −7.20980006114155286473947341742, −6.29670229400537650729444321883, −6.28118370578645402196158692333, −5.68465863116436055914602607048, −5.40941065075534095194244033749, −4.72738046016517462376134223046, −4.42524465686514871694159803405, −3.85885873293086675338957904608, −2.88180193076351113983639438164, −2.85668379629979186422132050434, −2.41167181005319106364125353977, −1.46303061533755639665183373410, −0.34023611415718700769027809145, 0.34023611415718700769027809145, 1.46303061533755639665183373410, 2.41167181005319106364125353977, 2.85668379629979186422132050434, 2.88180193076351113983639438164, 3.85885873293086675338957904608, 4.42524465686514871694159803405, 4.72738046016517462376134223046, 5.40941065075534095194244033749, 5.68465863116436055914602607048, 6.28118370578645402196158692333, 6.29670229400537650729444321883, 7.20980006114155286473947341742, 7.58115128738550044456594424531, 7.65072157489903981742781242784

Graph of the $Z$-function along the critical line